PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 621-626
Article title

Application of X-ray fluorescence method for elemental analysis of PM2.5 fraction

Content
Title variants
Languages of publication
EN
Abstracts
EN
The scientific interest in air pollution comes from its influence on human health, the condition of cultural heritage and climate. The PM2.5 fraction (particles of a diameter of 2.5 mm or below), indirectly, has a significant impact on health which is associated with respiratory tract and blood vessel related diseases. However, not only the size, but also the content of the particles has a significant meaning. To determine the particulate matter contents, elemental analysis can be performed using numerous techniques, the most important of which is X-ray fluorescence. In this study, samples of PM2.5 fraction collected in Krakow, Poland were analyzed. The X-ray fluorescence method was used to perform elemental analysis. The gravimetric method was applied to determine the concentration of the PM2.5 fraction. Low detection limits of individual elements and precision of the X-ray fluorescence method were determined. The concentrations of the following elements: Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Br, Rb, Sr and Pb in the PM2.5 fraction samples collected in Krakow were evaluated. The homogeneity of the samples was also estimated. The concentrations of PM2.5 fraction collected in the summer of 2013 were in the range of 6-23 ng/m3. The concentrations of PM2.5 fraction collected in the winter of 2013 were in the range of 26-171 ng/m3. The precision of the method was found to be below 1% for elements with high concentration in the sample and 6-8 % for trace elements.
Publisher
Journal
Year
Volume
60
Issue
3
Pages
621-626
Physical description
Dates
published
1 - 9 - 2015
received
17 - 9 - 2014
accepted
20 - 5 - 2015
online
25 - 9 - 2015
References
  • 1. Bari, M. A., Baumbach, G., Sarachage-Ruiz, L., & Kleanthes, S. (2009). Identification of PM10 sources in Mediterranean Island. Water Air Soil Poll. Focus, 9, 39-53. DOI: 10.1007/s11267-008-9194-6.[Crossref]
  • 2. Lazaridis, M., Dzumbova, L., Kopanakis, I., Ondracek, J., Glytsos, T., Aleksandropoulou, V., Voulgarakis, A., Katsivela, E., Mihelopoulos, N., & Eleftheriadis, K. (2008). PM10 and PM2.5 levels in the Eastern Mediterranean (Akrotiri Research Station, Crete, Greece). Water Air Soil Poll., 199, 85-101. DOI: 10.1007/s11270-007-9558-y.[WoS][Crossref]
  • 3. Samek, L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57, 601-606.
  • 4. Remoundaki, E., Papayannts, A., Kassomenos, P., Mantas, E., Kokkalis, P., & Tsezos, M. (2013). Infl uence of Saharan Dust Transport events on PM2.5 concentrations and composition over Athens. Water Air Soil Poll., 224, 1373-1776. DOI: 10.1007/s11270-012-1373-4.[Crossref][WoS]
  • 5. Vallius, M., Janssen, N. A., Heinrich, J., Hoek, G., Runskane, J., Cyrys, J., & Van Grieken, R. (2005). Sources and elemental composition of ambient PM2.5 in three European cities. Sci. Total Environ., 337, 147-162. DOI: 10.1016/j.scitotenv.2004.06.018.[Crossref]
  • 6. Samek, L., Gdowik, A., Ogarek, J., & Furman, L. (2016). Elemental composition and rough source apportionment of fi ne particulate matter in Krakow, Poland. Env. Prot. Eng. (in press).
  • 7. Niu, J., Rasmussen, P. E., Wheeler, A., Williams, R., & Chenier, M. (2010). Evaluation of airborne particulate matter and metals data in personal, indoor and outdoor environments using ED-XRF and ICP-MS and co-located duplicate samples. Atmos. Environ., 44, 235-245. DOI: 10.1016/j.atmosenv.2009.10.009.[Crossref][WoS]
  • 8. Karanasiou, A. A., Sitaras, L. E., Siskos, P. A., & Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmos. Environ., 41, 2368-2381. DOI: 10.1016/j.atmosenv.2006.11.006.[Crossref]
  • 9. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008.
  • 10. PN-EN 12341:2006a: Air quality - Determination of the PM10 fraction of suspended particulate matter- -reference method and field test procedure to demonstrate reference equivalence of measurement methods.
  • 11. PN-EN 14907:2006b: Ambient air quality - Standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particular matter.
  • 12. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom., 23, 278-285.
  • 13. Rogula-Kozlowska, W., Klejnowski, K., Zwozdziak, A., Sowka, I., & Trzepla-Nabaglo, K. (2011). Elemental composition and sources of PM2.5 in three Silesian cities, Wroclaw, Zabrze and Katowice, Poland. Nauka, Przyroda, Technologie, 5(4), 1-8.
  • 14. Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehring, R., Hansson, H. C., Harrison, R. M., Hermann, H., Hitzenberger, R., Huglin, C., Jones, A. M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Loschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, L., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., & Raes, F. (2010). A European aerosol phenomenology-3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ., 44, 1308-1320. DOI: 10.1016/j. atmosenv.2009.12.011.[Crossref][WoS]
  • 15. Watson, G. J., Chow, C. J., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material and coal burning in Northwestern Colorado during 1995. Chemosphere, 43, 1141-1151.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0107
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.