PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 603-607
Article title

Effects of the pre-irradiation storage procedure on the dose response of a Fricke xylenol orange gel dosimeter

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Fricke xylenol orange (FX) gel system is a chemical dosimeter characterized by good sensitivity, linear dose response, tissue equivalence, no toxicity, easy preparation, reproducibility and low cost. Thanks to the presence of the gelatinous matrix, the system is particularly suitable to perform reliable 3D mapping of the absorbed dose spatial distribution via magnetic resonance imaging (MRI) or optical techniques. The aim of this work is to study in a systematic way the influence of the pre-irradiation storage procedure upon sensitivity, dose response stability and lifetime of use of a FX gel system made with gelatin from porcine skin subjected to homogeneous irradiation. For this purpose, different pre-irradiation storage procedures, in terms of temperature and duration of each storage step, were investigated. In order to evaluate the dose response stability, the optical analyses of the samples were performed up to 6 hours after irradiation. Moreover, the samples were irradiated at time intervals of 24 hours for up to 7 days after preparation in order to evaluate the system lifetime of use. Regardless of their thermal and temporal life, the samples show linear dose responses in the investigated dose range (3-24 Gy) and an increase of sensitivity with the time elapsed between preparation and irradiation. Among the three pre-irradiation storage procedures considered here, a procedure that provides the best dose response stability and lifetime of use was identified and recommended for further use. The analyzed dosimetric system possesses good properties that make it promising for medical application, particularly concerning the evaluation of pre-treatment plan quality assurance within the conformational external beam radiotherapy
Publisher
Journal
Year
Volume
60
Issue
3
Pages
603-607
Physical description
Dates
published
1 - 9 - 2015
accepted
20 - 5 - 2015
received
24 - 9 - 2014
online
25 - 9 - 2015
References
  • 1. Attix, F. H. (2004). Introduction to radiological physics and radiation dosimetry. Germany: Wiley-VCH Verlag.
  • 2. Appleby, A., & Leghrouz, A. (1991). Imaging of radiation dose by visible color development in ferrousagarose Xylenol orange gels. Med. Phys., 18, 309-312. DOI: 10.1118/1.596676.[Crossref]
  • 3. Lepage, M., & Jordan, K. (2010). 3D dosimetry fundamentals: gels and plastics. J. Phys.-Conf. Ser., 250, 253-261. DOI: 10.1088/1742-6596/250/1/012055.[Crossref]
  • 4. Schreiner, L. J. (2004). Review of Fricke gel dosimeters. J. Phys.-Conf. Ser., 3, 9-21. DOI: 10.1088/1742-6596/3/1/003.[Crossref]
  • 5. Keall, P., & Baldock, C. (1999). A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry. Austral. Phys. Eng. Sci. Med., 22(3), 85-91.
  • 6. Davies, J. B., & Baldock, C. (2008). Sensitivity and stability of the Fricke-gelatin-xylenol orange gel dosimetery. Radiat. Phys. Chem., 77(6), 690-696. DOI: 10.1016/j.radphyschem.2008.01.007.[WoS][Crossref]
  • 7. Bero, M. A. (2007). Dosimetric properties of a radiochromic gel detector for diagnostic X-rays. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 39(7), 186-189. DOI: 10.1016/j. nima.2007.05.080.[Crossref]
  • 8. Gambarini, G., Gomarasca, G., Marchesini, R., Pecci, A., Pirola, L., & Tomatis, S. (1999). Three-dimensional determination of absorbed dose by spectrophotometric analysis of ferrous-sulphate agarose gel. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 422(1/3), 643-648. DOI: 10.1016/S0168-9002(98)00975-9.[Crossref]
  • 9. Baldock, C., Harris, P. J., Piercy, A. R., & Healy, B. (2001). Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method. Austral. Phys. Eng. Sci. Med., 24(1), 19-30. DOI: 10.1007/BF03178282.[Crossref]
  • 10. Gore, J. C., & Kang, Y. S. (1984). Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol., 29(10), 1189-1197. DOI: 10.1088/0031-9155/29/10/002.[Crossref]
  • 11. De Deene, Y. (2004). Fundamentals of MRI measurements for gel dosimetry. J. Phys.-Conf. Ser., 3, 87-114. DOI: 10.1088/1742-6596/3/1/009.[Crossref]
  • 12. Jordan, K. J., & Battista, J. (2004). Dose response of ferrous-xylenol orange gels: the effects of gel substrate, gelation time and dose fractionation. J. Phys.-Conf. Ser., 3, 232-235. DOI: 10.1088/1742-6596/3/1/035.[Crossref]
  • 13. Jordan, K. J., MacDonald, D. J., Pajak, T., & Battista, J. J. (2001). Refrigeration temperature gradients generate dose response artifacts in Fricke gelatin dosimeters. In DosGel2001 2nd International Conference on Radiotherapy Gel Dosimetry (pp. 95-98). Brisbane, Australia.
  • 14. Davies, J. B., & Baldock, C. (2010). Temperature dependence on the dose response of the Fricke-gelatin-xylenol orange gel dosimeter. Radiat. Phys. Chem., 79(5), 660-662. DOI: 10.1016/j.radphyschem. 2009.11.014.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0099
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.