PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 627-631
Article title

Identification of irradiated dried fruits using EPR spectroscopy

Content
Title variants
Languages of publication
EN
Abstracts
EN
The dominating carbohydrates in fruits are monosaccharides like fructose, glucose, sorbose and mannose. In dehydrated fruits, concentration of monosaccharides is higher than in fresh fruits resulting in the formation of sugar crystallites. In most of dried fruits, crystalline fructose, and glucose dominate and appear in proportion near to 1:1. Irradiation of dried fruits stimulates radiation chemical processes resulting in the formation of new chemical products and free radicals giving rise to multicomponent EPR signal which can be detected for a long period of time. For that reason, it is used as a marker for the detection of radiation treatment of dried fruits. It has been found that EPR spectra recorded in dried banana, pineapple, papaya, and fig samples resemble the EPR spectrum obtained by computer addition of fructose and glucose spectra taken in proportion 1:1. The decay of radiation induced EPR signals proceeds in dried fruits fast during the first month of observation and becomes much slower and almost negligible after prolonged storage. However, it remains intense enough for EPR detection even one year after processing. The radiation induced EPR signal is easily detected in dried fruits exposed to 0.5 kGy of gamma rays. Thus, the EPR method of the detection of irradiated fruits can be used for the control of dried fruits undergoing quarantine treatment with 200-300 Gy of ionizing radiation.
Publisher
Journal
Year
Volume
60
Issue
3
Pages
627-631
Physical description
Dates
published
1 - 9 - 2015
accepted
20 - 5 - 2015
online
25 - 9 - 2015
received
3 - 11 - 2014
References
  • 1. Commoner, B., Townsed, J., & Pake, G. E. (1954). Agricultural research under review. Nature, 174, 663-665.[WoS]
  • 2. Dood, N. J. F., Swallow, A. J., & Ley, F. J. (1985). Use of ESR to identify irradiated food. Radiat. Phys. Chem., 26, 451-453.[Crossref]
  • 3. Raffi , J., Agnel, J. -P., Buscarlet, L. A., & Martin, C. C. (1988). Electron spin resonance identification of irradiated strawberries. J. Chem. Soc., Faraday Trans., 1, 84, 3359-3362.
  • 4. Raffi , J., & Agnel, J. -P. (1989). Electron spin resonance identifi cation of irradiated fruits. Radiat. Phys. Chem., 34(6), 891-894.
  • 5. Raffi , J., Stachowicz, W., Migdał, W., Barabassy, S., Kalman, B., Yordanov, N., Andrade, E., Prost, M., & Callens, F. (1998). Establishment of an eastern network of laboratories for identifi cation of irradiated foodstuffs. Final Report of Copernicus Concerned Action. CCE. (CIPA-CT94-0134).
  • 6. Raffi , J., Stevenson, M. H., Kent, M., Thiery, J. M., & Belliardo, J. -J. (1992). European intercomparison on electron spin resonance identifi cation of irradiated foodstuffs. Int. J. Food Sci. Technol., 27, 111-124.
  • 7. Joint FAO/IAEA/WHO Study Group. (1999). High- -dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Geneva: World Health Organization.
  • 8. Linke, B., Ammon, J., Ballin, U., Brockmann, R., Brunner, J., Delincee, H., Eisen, S., Eming, D., Eschelbach, H., Estendorfer-Rinner, S., Fienitz, B., Frohmut, G., Helle, N., Holstein, K., Jonas, K., Krolls, W., Kuhn, T., Kruspe, W., Marchioni, E., Meier, W., Pford, J., Schleich, C., Stewart, E., Trapp, C., Vreden, N., Wiezorek, C., Bogl, K. W., & Schreiber, G. A. (1996). Elektronenspinresonanzspektro-skopische Untersuchungen zur Identifi zierungbestrahlter getrockneter und trischer Fruchte: Durchführung eines Ringversuches an getrockneten Feigen und Mangos sowie an frischen Erdbeeren. Berlin: Bundesinstitut für gesundheitlichen Verbrau-cherschutz und Veterinärmedizin. (BgW - Hette 03/1996).
  • 9. EN 13708:2003: Foodstuffs - Detection of irradiated food containing crystalline sugar by ESR spectroscopy. Brussels: European Committee for Standardisation (CEN).
  • 10. Vanhaelewyn, G., Jansen, B., Callens, F. J., & Sagstuen, E. (2004). ENDOR - Assisted study of the stable EPR spectrum of X-irradiated α-L-Sorbose single crystals: MLCFA and simulation decomposition analyses. Radiat. Res., 162, 96-104.
  • 11. Vanhaelewyn, G., Sadło, J., Callens, F., Mondelaers, W., Frenne, D., & Matthys, P. (2000). A decomposition study of the EPR spectrum of irradiated sucrose. Appl. Radiat. Isot., 52, 1221-1227.[Crossref]
  • 12. Guzik, G. P., Stachowicz, W., & Michalik, J. (2008). Study on stable radicals produced by ionising radiation in dried fruits and related sugars by electron paramagnetic resonance spectrometry and photostimulated luminescence method I. D-fructose. Nukleonika, 53(Suppl. 2), S89-S94.
  • 13. Guzik, G. P., & Stachowicz, W. (2013). Study on radicals giving rise to multicomponent EMR spectra in dried fruits exposed to ionizing radiation II. D(+) Glucose. Nukleonika, 58(3), 425-428.
  • 14. The physicochemical guide. The group work in Polish. (1974). Warsaw: Wydawnictwa Naukowo-Techniczne WNT.
  • 15. Von Sonntag, C., & Schuchmann, H. -P. (2001). Studies in physical and theoretical chemistry: Carbohydrates. In Radiation chemistry: Present status and future trends (pp. 481-511). Elsevier Science.
  • 16. Tabner, B. J., & Tabner, V. A. (1991). An electron spin resonance study of gamma-irradiated grapes. Radiat. Phys. Chem., 38(6), 523-531.
  • 17. Helle, N., Linke, B., Schroeiber, G. A., & Bogl, K. W. (1992). Nachweis der gamma Bestrahlung von Trockenfrüchten. Bundesgesundheitsblatt, 35, 179-184.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0093
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.