Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 60 | 3 | 669-677

Article title

The influence of ionizing radiation on the properties of starch-PVA films


Title variants

Languages of publication



The cornstarch: poly(vinyl alcohol) (PVA) films characterized by the alternating ratio of starch:PVA (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) and containing 30% of glycerol were prepared by solution casting. The films were irradiated with an absorbed dose of 25 kGy with gamma rays in a vacuum and with fast electrons in the air. The films characterized by a high content of starch appeared stiff, while the films characterized by a high content of PVA were highly flexible. The tensile strength and flexibility, as well as swelling and hydrophilicity, increased with the increase in the PVA content in the films. However, the tensile strength and wetting angle values achieved a minimum at an intermediate composition. It was found that irradiation enables to reduce hydrophilicity of the films accompanied by a decrease in their flexibility. No general conclusion concerning the effect of irradiation on tensile strength and swelling behavior can be derived. An increase in the homogeneity of the films and an increase in the compatibility of their components was found by scanning electron microscopy (SEM). Strong interactions of the starch and the PVA components were discovered by diffuse reflectance spectroscopy. Degradation was found to be the prevailing process occurring in the films under the influence of irradiation. The possible accompanying crosslinking is discussed in terms of the gel content in the samples. Creation of various oxidation products in the films characterized by the modified composition was observed under the influence of irradiation carried out in the air. Basing on the obtained results it can be supposed that the selected starch-PVA compositions might appear useful as packagings of the products predicted for radiation decontamination.










Physical description


1 - 9 - 2015
13 - 11 - 2014
20 - 5 - 2015
25 - 9 - 2015


  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1106, Fax: +48 22 811 1532
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1106, Fax: +48 22 811 1532
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1106, Fax: +48 22 811 1532
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1106, Fax: +48 22 811 1532
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1106, Fax: +48 22 811 1532


  • 1. Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: a review. Food Technol., 40, 47-59.
  • 2. Campos, A., Gershenson, L. N., & Flores, S. K. (2011). Development of edible fi lms and coatings with antimicrobial activity. Review paper. Food Bioprocess Technol., 4, 849-875.[WoS]
  • 3. Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A., (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058-2076.
  • 4. Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effect of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J. Food Eng., 75, 453-460.[Crossref]
  • 5. Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modification of the functional properties of the edible fi lms prepared using starch and starch-lipid system. Nukleonika, 55(2), 233-242.
  • 6. Cieśla, K., Watzeels, N., & Rahier, H. (2014). Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films. Radiat. Phys. Chem., 99, 18-22.[WoS][Crossref]
  • 7. Leszczyński, W. (1998). Starch application in biodegradable packaging plastics. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Technologia Żywności, 12(328), 105-115.
  • 8. Xiong, H. G., Tang, S. W., Tang, H. L., & Zou, P. (2008). The structure and properties of a starch-based biodegradable film. Carbohydr. Polym., 71, 263-268.[Crossref]
  • 9. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1-16.[WoS]
  • 10. Chai, W. -L., Chow, J. -D., & Chen, Ch. -Ch. (2012). Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J. Polym. Environ., 20, 550-564.[Crossref][WoS]
  • 11. Jiang, X., Jiang, T., Gan, L., Zhang, X., Dai, H., & Zhang, X. (2012). The plasticizing mechanism and effect of calcium chloride on starch/poly(vinylalcohol) fi lms. Carbohydr. Polym., 90, 1677-1684.[WoS][Crossref]
  • 12. Chen, Y., Cao, X., Chang, P. R., & Huneault, M. A. (2008). Comparative study on the fi lms of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym., 73, 8-17.[Crossref][WoS]
  • 13. Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging material. Bioresour. Technol., 100, 1705-1710.[Crossref][WoS]
  • 14. Das, K., Ray, D., Bandyopadhyay, N. R., Sahoo, S., Mohanty, A. K., & Misra, M. (2011). Physicomechanical properties of the jute micro/nanofi bril reinforce starch/polyvinyl alcohol biocomposite films. Composites B, 42, 376-381.[Crossref][WoS]
  • 15. Yoon, S. -D., Park, M. -H., & Byun, H. -S. (2012). Mechanical and water barrier properties of starch/PVA composite fi lms by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles. Carbohydr. Polym., 87, 676-686.[Crossref]
  • 16. Zhou, J., Ma, Y., Ren, L., Tong, J., Liu, Z., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632-638.[Crossref]
  • 17. Khan, M. A., Bhattacharia, S. K., Kader, M. A., & Bahari, K. (2006). Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydr. Polym., 63, 500-506.[Crossref]
  • 18. Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: a review. Mater. Sci. Eng. C-Mater. Biol. Appl., 29, 2370.[Crossref]
  • 19. Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763-771.[Crossref][WoS]
  • 20. Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend fi lms. J. Polym. Environ., 19, 1013-1022.[WoS][Crossref]
  • 21. Zhai, M., Yoshii, F., & Kume, T. (2003). Radiation modification of starch-based plastic sheets. Carbohydr. Polym., 52, 311-317.[Crossref]
  • 22. Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study of antibacterial starch/chitosan blend film under the action of irradiation. Carbohydr. Polym., 57, 83-88.[Crossref]
  • 23. Lepifre, S., Baumberger, S., Pollet, B., Cazaux, F., Coqueret, X., & Lapierre, C. (2004). Reactivity of sulfur free alkali lignins within starch films. Ind. Crop. Prod., 20, 219-230.[Crossref]
  • 24. Kang, H. J., Jo, Ch., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). A combination of gamma irradiation and CaCl2 immersion for a pectin-based biodegradable film. Carbohydr. Polym., 60, 547-551.
  • 25. Kang, H., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). Pectin and gelatin based film. Effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem., 72, 745-750.
  • 26. Kober, E., Gonzalez, M. E., Gavioli, N., & Salmoral, E. M. (2007). Modification of water absorption capacity of a plastic based on bean protein using gamma
  • irradiated starches as additives. Radiat. Phys. Chem., 76, 55-60.
  • 27. Khan, R. A., Salmieri, S., Dussault, D., Uribe-Calderon, J., Khamal, M. R., Safrany, A., & Lacroix, M. (2010). Production of nanocellulose-reinforced methylcellulose-based biodegradable fi lms. J. Agric. Food Chem., 58, 7878-7885.[Crossref]
  • 28. Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modifi cation of surface properties of thin polysaccharide fi lms by low energy electron exposure. Carbohydr. Polym., 83, 608-615.[Crossref]
  • 29. El Sayed, A. M., Diab, H. M., & El-Mallawany, R. (2013). Controlling the dielectric and optical properties of PVA/PEG polymer blend via e-beam irradiation. J. Polym. Res., 20, 255. DOI: 10.1007/s10965-013-0255-9.[Crossref][WoS]
  • 30. Ravindrahary, I. V., Rajashekhar, F. B., Praveena, S. D., & Ganesh, S. (2015). Impact of electron beam irradiation on free-volume related microstructural properties of PVA:NaBr polymer composites Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 342, 29-38.
  • 31. Stoica-Guzun, A., Stroescu, M., Jipa, J., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(winyl alcohol) and bacterial cellulose composites used as packaging materials. Radiat. Phys. Chem., 84, 200-204.[Crossref][WoS]
  • 32. Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535-1541.[Crossref]
  • 33. Chmielewski, A. G. (2006). Packaging for food irradiation. Warsaw: Institute of Nuclear Chemistry and Technology. (Raporty IChTJ. Seria B nr 1/2006).
  • 34. Cieśla, K., & Eliasson, A. -C. (2007). DSC studies of gamma irradiation effect on the amylose-lipid complex formed in wheat and potato starches. Acta Aliment. Hung., 36(1), 111-126.[Crossref][WoS]
  • 35. Cieśla, K. (2009). Transformation of supramolecular structure initialised in natural polymers by gamma irradiation. Warsaw: Institute of Nuclear Chemistry and Technology (in Polish).
  • 36. Aguillera, J. M., & Rojas, E. (1996). Rheological, thermal and microstructural properties of whey protein - cassava starch gels. J. Food. Sci., 61, 962-966.[Crossref]
  • 37. Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257-260.[Crossref]
  • 38. Głuszewski, W., & Zagórski, Z. (2008). Radiation effects in polypropylene/polystyrene blends as the model of aromatic protection effects. Nukleonika, 53, 22-25.
  • 39. Cieśla, K., & Sartowska, B. (2015). Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM. Radiat. Phys. Chem. DOI: 10.1016/j.radphyschem.2015.04.027.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.