Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 3 | 489-496
Article title

A Monte Carlo study on dose enhancement and photon contamination production by various nanoparticles in electron mode of a medical linac

Title variants
Languages of publication
The aim of this study is the evaluation of electron dose enhancement and photon contamination production by various nanoparticles in the electron mode of a medical linac. MCNPX Monte Carlo code was used for simulation of Siemens Primus linac as well as a phantom and a tumor loaded with nanoparticles. Electron dose enhancement by Au, Ag, I and Fe2O3 nanoparticles of 7, 18 and 30 mg/ml concentrations for 8, 12 and 14 MeV electrons was calculated. The increase in photon contamination due to the presence of the nanoparticles was evaluated as well. The above effects were evaluated for 500 keV and 10 keV energy cut-offs defined for electrons and photons. For 500 keV energy cut-off, there was no significant electron dose enhancement. However, for 10 keV energy cut-off, a maximum electron dose enhancement factor of 1.08 was observed for 30 mg/ml of gold nanoparticles with 8 MeV electrons. An increase in photon contamination due to nanoparticles was also observed which existed mainly inside the tumor. A maximum photon dose increase factor of 1.07 was observed inside the tumor with Au nanoparticles. Nanoparticles can be used for the enhancement of electron dose in the electron mode of a linac. Lower energy electron beams, and nanoparticles with higher atomic number, can be of greater benefit in this field. Photons originating from nanoparticles will increase the photon dose inside the tumor, and will be an additional advantage of the use of nanoparticles in radiotherapy with electron beams.
Physical description
1 - 7 - 2015
11 - 6 - 2015
29 - 10 - 2014
6 - 8 - 2015
  • 1. McMahon, S., Mendenhall, M., & Jain, S. (2008). Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys. Med. Biol., 53(20), 5635–5651. DOI: 10.1088/0031-9155/53/20/005.[WoS][Crossref]
  • 2. Ghasemi, M. R., Zafarghandi, M., & Raisali, G. (2010). Monte Carlo simulation of dose absorption of nano-particles-labeled tissues used in x-ray microbeam radiation therapy. J. Nucl. Sci. Technol., 50(4), 37–47.
  • 3. Cho, S. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys. Med. Biol., 50(15), 163–173. DOI: 10.1088/0031-9155/50/15/N01.[Crossref]
  • 4. Zhang, S. X., Gao, J., & Buchholz, T. A. (2009). Quantifying tumour-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed. Microdevices, 11(4), 925–933. DOI: 10.1007/s10544-009-9309-5.[WoS][Crossref]
  • 5. Khatib, E., Scrimger, J., & Murray, B. (1991). Reduction of the bremsstrahlung component of clinical electron beams: implications for electron arc therapy and total skin electron irradiation. Phys. Med. Biol., 36(1), 111–118. DOI: 10.1088/0031-9155/36/1/010.[Crossref]
  • 6. Cho, S., Jong, H., & Chan, H. (2010). Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J. Korean Phys. Soc., 56(6), 1754–1758. DOI: 10.3938/jkps.56.1754.[Crossref][WoS]
  • 7. Chow, J. C., Leung, M. K., & Jaffray, D. A. (2012). Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys. Med. Biol., 57(11), 3323–3331. DOI: 10.1088/0031-9155/57/11/3323.[Crossref][WoS]
  • 8. Rahman, W. N., Wong, C. J., & Ackerly, T. (2012). Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation does enhancement in synchrotron and conventional radiotherapy type beams. Australas. Phys. Eng. Sci. Med., 35(3), 301–309. DOI: 10.1007/s13246-012-0157-x.[WoS][Crossref]
  • 9. Rahman, W. N., Bishara, N., & Ackerly, T. (2009). Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine, 5(2), 136–142. .[Crossref][WoS]
  • 10. Jabari, N., & Hashemi, B. (2009). An assessment of the photon contamination due to bremsstrahlung radiation in the electron beams of a Neptun 10PC linac using a Monte Carlo method. Iran. J. Med. Phys., 6(1), 21–32.
  • 11. Mahdavi, M., Mahdavi, S. R. M., & Alijanzadeh, H. (2011). Comparing the measurement value of photon contamination absorbed dose in electron beam field for Varian clinical accelerator. IUP J. Phys., 5(3), 7–11.
  • 12. Sharma, A. K., Supe, S. S., & Anantha, N. (1995). Physical characteristics of photon and electron beams from a dual energy linear accelerator. Med. Dosim., 20(1), 55–66. DOI: 10.1016/0958-3947(94)00019-F.[Crossref]
  • 13. Gur, D., Bukovitz, A. G., & Serago, C. (1979). Photon contamination in 8-20-MeV electron beams from a linear accelerator. Med. Phys., 6(2), 145–146. DOI: 10.1118/1.594525.[Crossref]
  • 14. Bruno, B., Hyodynmaa, S., & Brahme, A. (1997). Quantification of mean energy and photon contamination for accurate dosimetry of high-energy electron beams. Phys. Med. Biol., 42(10), 1849–1873. DOI: 10.1088/0031-9155/42/10/001.[Crossref]
  • 15. Bahreyni Toossi, M. T., Ghorbani, M., & Akbari, F. (2013). Monte Carlo modeling of electron modes of a Siemens Primus linac (8, 12 and 14 MeV). J. Radiother. Pract., 12(4), 352–359. DOI: 10.1017/S1460396912000593.[Crossref]
  • 16. Reich, P. D. (2008). A theoretical evaluation of transmission dosimetry in 3D conformal radiotherapy. Doctoral dissertation, Adelaide University of Australia. Retrieved 17 March 2015, from .
  • 17. Waters, L. S. (2002). MCNPX User’s Manual, Version 2.4.0. Los Alamos National Laboratory (LACP-02-408).
  • 18. ICRU. (1989). Tissue substitutes in radiation dosimetry and measurement. Bethesda, MD: ICRU (ICRU Report No. 44).
  • 19. Guidelli, E. J., & Baffa, O. (2014). Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Med. Phys., 41(3), 032101. DOI: 10.1118/1.4865809.[Crossref]
  • 20. Iwamoto, K. S., Cochran, S. T., & Winter, J. (1987). Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumors. Radiother. Oncol., 8(2), 161–170. .
  • 21. Klein, S., Sommer, A., & Distel, L. (2014). Superparamagnetic iron oxide nanoparticles as novel x-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B., 118(23), 6159–6166. DOI: 10.1021/jp5026224.[Crossref]
  • 22. Roeske, J. C., Nunez, L., & Hoggarth, M. (2007). Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol. Cancer Res. Treat., 6(5), 395–401.[Crossref][WoS]
  • 23. Kim, J. K., Seo, S. J., & Kim, K. H. (2010). Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology, 21(42), 425102. DOI: 10.1088/0957-4484/21/42/425102.[WoS][Crossref]
  • 24. Bakhshabadi, M., Ghorbani, M., & Soleimani Meigooni, A. (2013). Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media. Australas. Phys. Eng. Sci. Med., 36(3), 301–311. DOI: 10.1007/s13246-013-0214-0.[WoS][Crossref]
  • 25. McMahon, S. J., Hyland, W. B., & Muir, M. F. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep., 1(18), 1–9. DOI: 10.1038/srep00018.[WoS][Crossref]
  • 26. Leung, M. K. K., Chow, J. C. C., & Chithrani, B. (2011). Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med. Phys., 38(2), 624–631. DOI: 10.1118/1.3539623.[Crossref]
  • 27. Ghorbani, M., Pakravan, D., & Bakhshabadi, M. (2012). Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modeling. Nukleonika, 57(3), 401–406.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.