PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 483-488
Article title

Effect of UV irradiation on free radicals in synthetic melanin and melanin biopolymer from Sepia officinalis – EPR examination

Content
Title variants
Languages of publication
EN
Abstracts
EN
Free radicals in synthetic melanin and melanin from Sepia officinalis were studied by electron paramagnetic resonance (EPR) spectroscopy. The effect of time of ultraviolet (UV) irradiation on free radicals in these melanins was tested. The samples were exposed to UV during 15, 30, and 60 minutes. EPR spectra were measured with microwaves from an X-band (9.3 GHz) in the range of microwave power of 2.2–70 mW. The performed EPR examinations indicate that high concentrations (~1021–1022 spin/g) of o-semiquinone free radicals with g factors of 2.0039–2.0045 exist in all the tested samples. For nonirradiated samples, free radical concentration was higher in natural melanin than in synthetic melanin. UV irradiation caused the increase of free radical concentrations in synthetic melanin samples and this effect depends on the time of irradiation. The largest free radical formation in the both melanins was obtained for 60 min of UV irradiation. Free radical concentrations after the UV irradiation of melanins during 30 min were lower than during irradiation by 15 min, and probably this effect was the result of recombination of the radiatively formed free radicals. EPR lines of the tested samples broadened with increasing microwave power, so these lines were homogeneously broadened. The two types of melanins differed in the time of spin-lattice relaxation processes. Slower spin-lattice relaxation processes exist in melanin from Sepia officinalis than in synthetic melanin. UV irradiation did not change the time of spin-lattice relaxation processes in the tested melanins. The performed studies confirmed the usefulness of EPR spectroscopy in cosmetology and medicine.
Publisher
Journal
Year
Volume
60
Issue
3
Pages
483-488
Physical description
Dates
published
1 - 7 - 2015
accepted
16 - 4 - 2015
received
24 - 9 - 2014
online
6 - 8 - 2015
References
  • 1. Sarna, T. (1981). Study of the structure and properties of the melanin active centers. Zagadnienia Biofizyki Współczesnej, 6, 201–219 (in Polish).
  • 2. Pasenkiewicz-Gierula, M. (1990). Study of the structure and dynamics of paramagnetic molecular systems with spin of s=1/2 by electron paramagnetic resonance (EPR) method. D. Sc. Thesis, Jagiellonian University, Kraków (in Polish).
  • 3. Plonka, P., Michalczyk, D., Popik, M., Handjiski, B., & Paus, R. (2008). Electron paramagnetic resonance (EPR) spectroscopy for investigating murine telogen skin after spontaneous or depilation-induced hair growth. J. Dermatol. Sci., 49, 227–240.[Crossref][WoS]
  • 4. Krzywda, A., Petelenz, E., Michalczyk, D., & Płonka, P. M. (2008). Sclerotia of the acellular (true) slime mould Fuligo septica as a model to study melanization and anabiosis. Cell. Mol. Biol. Lett., 13, 130–143.[WoS][Crossref]
  • 5. Ito, S., & Wakamatsu, K. (2003). Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res., 16, 523–531.[Crossref]
  • 6. Plonka, P. M., Michalczyk, D., Popik, M., Handjiski, B., Slominski, A., & Paus, R. (2005). Splenic eumelanin differs from hair eumelanin in C57BL/6 mice. Acta Biochim. Pol., 52, 433–441.
  • 7. Zdybel, M., Pilawa, B., Buszman, E., Wrześniok, D., Krzyminiewski, R., & Kruczyński, Z. (2011). Continuous microwave saturation of EPR spectra of melanin complexes at different temperatures. Pol. J. Med. Phys. Eng., 17, 85–94.
  • 8. Godechal, Q., & Gallez, B. (2011). The contribution of electron paramagnetic resonance to melanoma research. J. Skin Cancer, 2011, Article ID 273280(6pp.). DOI: 10.1155/2011/273280.[Crossref]
  • 9. Herrling, T., Jung, K., & Fuchs, J. (2008). The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair. Spectrochim. Acta Part A, 69, 1429–1435.[WoS]
  • 10. Çolak, Ş., & Özbey, T. (2011). An ESR study on biological dosimeters: Human hair. Radiat. Meas., 46, 465–472.[Crossref]
  • 11. Zdybel, M., Chodurek, E., & Pilawa, B. (2011). EPR studies of DOPA-melanin complexes with Fe(III). Appl. Magn. Reson., 40, 113–123.[WoS][Crossref]
  • 12. Buszman, E., Pilawa, B., Zdybel, M., Wrześniok, D., Grzegorczyk, A., & Wilczok, T. (2005). EPR examination of Zn2+ and Cu2+ effect on free radicals in DOPA-melanin-netilmicin complexes. Chem. Phys. Lett., 403, 22–28.[WoS]
  • 13. Najder-Kozdrowska, L., Pilawa, B., Więckowski, A. B., Buszman, E., & Wrześniok, D. (2013). Influence of microwave power on EPR signal of melanin radical and copper(II) ions in DOPA-melanin complexes. Acta Phys. Pol. A, 124, 112–114.[Crossref]
  • 14. Sarna, T., Hyde, J. S., & Swartz, H. M. (1976). Ion-exchange in melanin: an electron spin resonance study with lanthanide probes. Science, 192, 1132–1134.
  • 15. Larsson, B. S. (1993). Interaction between chemicals and melanin. Pigment Cell Res., 6, 127–133.[Crossref]
  • 16. Fokuda, M., Morito, Y., Sasaki, K., & Yamamoto, Y. (2000). Studies on the binding mechanism of fluoroquinolones to melanin. J. Infect. Chemother., 6, 72–76.[Crossref]
  • 17. Zdybel, M., Pilawa, B., Buszman, E., & Wrześniok, D. (2013). Effect of oxygen on free radicals in DOPA-melanin complexes with netilmicin, diamagnetic Zn(II), and paramagnetic Cu(II). Chem. Phys. Lett., 556, 278–286.[WoS]
  • 18. Zdybel, M., Pilawa, B., Buszman, E., & Witoszyńska, T. (2013). EPR studies Cladosporium cladosporioides complexes with amphotericin B. Nukleonika, 58(3), 401–405.
  • 19. Beberok, A., Zdybel, M., Pilawa, B., Buszman, E., & Wrześniok, D. (2014). EPR characteristics of free radicals in DOPA-melanin-moxifloxacin complexes at ambient level of UVA radiation. Chem. Phys. Lett., 592, 41–46.[WoS]
  • 20. Chodurek, E., Zdybel, M., & Pilawa, B. (2013). Application of EPR spectroscopy to examination of free radicals in melanins from A-375 and G-361 human melanoma malignum cells. J. Appl. Biomed., 11, 173–185.
  • 21. Chodurek, E., Zdybel, M., Pilawa, B., & Dzierżewicz, Z. (2012). Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin. Acta Pol. Pharm.-Drug Res., 69, 1334–1341.
  • 22. Chodurek, E., Czyżyk, D., Pilawa, B., & Wilczyński, S. (2009). EPR studies of paramagnetic centers in melanin from Sepia officinalis. Eng. Biomater., 86, 28–32.
  • 23. Gibka, J. (2000). Wykorzystanie melaniny i procesu melanogenezy w kosmetyce. Pol. J. Cosmetol., 3, 164–176.
  • 24. Sarna, T. (1992). New trends in photobiology: Properties and function of the ocular melanin – A photobiophysical view. J. Photochem. Photobiol. B: Biol., 12, 215–258.[Crossref]
  • 25. Sarna, T., Burke, J. M., Korytowski, W., Różanowska, M., Skumatz, C. M., Zaręba, A., & Zaręba, M. (2003). Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp. Eye Res., 76, 89–98.[Crossref]
  • 26. Stankowski, J., & Hilczer, W. (2005). Wstęp do spektroskopii rezonansów magnetycznych. Warsaw: PWN.
  • 27. Wertz, J. E., & Bolton, J. R. (1986). Electron spin resonance theory and practical applications. New York: Chapman and Hall.
  • 28. Chodurek, E., Kurkiewicz, S., Turek, A., Marcinkowski, A., Trzebicka, B., Dzierżęga-Lęcznar, A., Stępień, K., & Dzierżewicz, Z. (2010). Pyrolysis and atomic force microscopy in structural studies of synthetic tyrosine-melanin and natural melanin from Sepia officinalis. Farmaceutyczny Przegląd Naukowy, 6, 46–52 (in Polish).
  • 29. Nofsinger, J., Forest, S., Eibest, L., Gold, K., & Simon, J. (2000). Probing the building blocks of eumelanins using scanning electron microscopy. Pigment Cell Res., 13, 179–184.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0085
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.