PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 455-459
Article title

Impact of humic acids on EYL liposome membranes: ESR method

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, the effects of model (commercial) and natural (extracted from peat) humic substances on the membrane of liposomes formed with egg yolk lecithin (EYL) are presented. In our research, mass concentrations of fulvic and humic acids were used, which in relation to lecithin varied from 0% to 13%. To study membrane fluidity, electron spin resonance (EPR) was used with two spin probes, penetrating various regions of the lipid bilayer. The effects of model and natural humic substances (humic acids – HAs and fulvic acids – FAs) on the lipid membrane in different regions were researched: the lipid-water interphase, and in the middle of the lipid bilayer. It was shown that FA and HA impact the fluidity of liposome membranes in different ways. Increased mass concentrations of HAs decreased membrane fluidity in both acids: extracted from peat and the model. However, increased mass concentration of FAs extracted from peat, decreased membrane fluidity in the surface region, at the same time stiffening the central part of the bilayer. Increasing the concentration of FAs extracted from peat had the opposite effect when compared to model FA. This effect may be related to the complexation of xenobiotics present in the soil environment and their impact on biological membranes.
Publisher
Journal
Year
Volume
60
Issue
3
Pages
455-459
Physical description
Dates
published
1 - 7 - 2015
received
1 - 10 - 2014
accepted
30 - 1 - 2015
online
6 - 8 - 2015
References
  • 1. Schnitzer, M., & Khan, S. U. (1978). Soil organic matter. Amsterdam: Elsevier.
  • 2. Pisarek, I. (2003). Characterization of humic substances formed in soil fertilized with sewage sludge and cattle manure. In Humic Substances in Ecosystems 5 (pp. 93–99). Duszniki Zdrój, Poland.
  • 3. Choudhry, G. G. (1984). Humic substances: structural, photophysical, photochemical and free radical aspects and interactions with environmental chemicals. New York: Gordon and Breach Science Publishers.
  • 4. Buffle, J. A. E. (1977). Les substances humiques et leurs interactions avec les ions mineraux. In Conference Proceedings de la Commission d’Hydrologie Appliquee de A.G.H.T.M. (pp. 3–10). l’Universite d’Orsay.
  • 5. Schulten, H. R., Plage, B., & Schnitzer, M. (1991). A chemical structure for humic substances. Naturwissenschaften, 78, 311–312.[Crossref]
  • 6. Jerzykiewicz, M., Czechowski, F., Jezierski, A., & Drozd, J. (1999). Influence of ammonia and nitrogen dioxide on free radicals in humic acids derived from composts, soil, peat and brown coal. An EPR study. Humic Subst. Environ., 1(3/4), 21–26.
  • 7. Pisarek, I., Głowacki, M., & Czernia, M. (2012). The impact of Pleurotus ostreatus on organic matter transformation processes. Water Sci. Technol., 66(12), 2660–2673. DOI: 10.2166/WST.2012.502.[Crossref]
  • 8. Paul, A., Stosser, R., Zehl, A., Zwirnmann, E., Vogt, R., & Steinberg, C. E. W. (2006). Nature and abundance of organic radicals in natural organic matter: Effect of pH and irradiation. Environ. Sci. Technol., 40, 5897–5903.[Crossref]
  • 9. Man, D., Słota, R., Mele, G., & Li, J. (2008). Fluidity of liposome membranes doped with metalloporphyrins: ESR study. Z. Naturforsch. C, 65, 440–444.
  • 10. Polewski, K., Sławińska, D., Sławiński, J., & Pawlak, A. (2005). The effect of UV and visible light radiation on natural humic acid. EPR spectral and kinetic studies. Geoderma, 126, 291–299.[Crossref]
  • 11. Boniewska-Bernacka, E., Man, D., Słota, R., & Broda, M. (2011). Effect of tin and lead chlorotriphenyl – analogues on selected living cells. J. Biochem. Mol. Toxicol., 25(4), 231–237.[Crossref][WoS]
  • 12. Mitrus, S., & Man, D. (2012). Effect of tin and lead chlorotriphenyl analogues on fruit fly Drosophila hydei and liposomes membrane. J. Biochem. Mol. Toxicol., 26(4), 162–167.[Crossref]
  • 13. Man, D., Podolak, M., & Engel, G. (2006). The influence of tin compounds on the dynamic properties of liposome membranes: A study using the ESR method. Cell. Mol. Biol. Lett., 11, 56–61.[Crossref]
  • 14. Man, D., Pisarek, I., Braczkowski, M., Pytel, B., & Olchawa, R. (2014). The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method. J. Liposome Res., 24(2), 106–112.[Crossref][WoS]
  • 15. Soil Taxonomy. (1999). A basic system of soil classification for making and interpreting soil surveys. Soil Survey Staff. USDA-NRCS: US Gort. Printing Office, Washington, DC (Agric. Hand. 436).
  • 16. Man, D., Słota, R., Broda, M. A., Mele, G., & Li, J. (2011). Metalloporphyrin intercalation in liposome membranes: ESR study. J. Biol. Inorg. Chem., 16(1), 173–181.[Crossref]
  • 17. Shimshick, E. J., & McConnell, H. M. (1973). Lateral phase separation in phospholipid membranes. Biochemistry, 12, 2351–2360.[Crossref]
  • 18. Hemminga, M. A. (1973). Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes. Chem. Phys. Lipids, 32, 323–383.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0081
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.