Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 3 | 429-434

Article title

Multifrequency EPR study on radiation induced centers in calcium carbonates labeled with 13C

Content

Title variants

Languages of publication

EN

Abstracts

EN
In calcite and aragonite, γ-irradiated at 77 K, several paramagnetic centers were generated and detected by EPR spectroscopy; in calcite, CO3− (orthorhombic symmetry, bulk and bonded to surface), CO33−, NO32−, O3−, and in aragonite CO2− (isotropic and orthorhombic symmetry) depending on the type of calcium carbonate used. For calcium carbonates enriched with 13C more detailed information about the formed radicals was possible to be obtained. In both natural (white coral) and synthetic aragonite the same radicals were identified with main differences in the properties of CO2− radicals. An application of Q-band EPR allowed to avoid the signals overlap giving the characteristics of radical anisotropy.

Publisher

Journal

Year

Volume

60

Issue

3

Pages

429-434

Physical description

Dates

published
1 - 7 - 2015
received
13 - 10 - 2014
accepted
30 - 1 - 2015
online
6 - 8 - 2015

Contributors

  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1236
author
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1236
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1236
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1236
  • Institute of Ceramics and Building Materials, 9 sPostępu Str., 02-676 Warsaw, Poland

References

  • 1. Ikeya, M. (Ed.) (1993). Application of electron spin resonance – dating, dosimetry and microscopy (Chapter 5). Singapore: World Scientific.
  • 2. Weihe, H., Piligkos, S., Barra, A. L., Laursen, I., & Johnsen, O. (2009). EPR of Mn2+ impurities in calcite: a detailed study pertinent to marble provenance determination. Archaeometry, 51, 43–48.[Crossref][WoS]
  • 3. Callens, F., Vanhaelewyn, G., Matthys, P., & Boesman, E. (1998). EPR of carbonate derived radicals: Applications in dosimetry, dating and detection of irradiated food. Appl. Magn. Reson., 14, 235–254.[Crossref]
  • 4. Jacobs, C., De Canniere, P., Debuyst, R., Dejehet, F., & Apers, D. (1989). ESR study of gamma-ray irradiated synthetic calcium carbonates. Appl. Radiat. Isot., 40, 1147–1152.[Crossref]
  • 5. Katzanberger, O., Debuyst, R., De Canniere, P., Dejehet, F., Apers, D., & Barabas, M. (1989). Temperature experiments on Mollusc samples: an approach to ESR signal identification. Appl. Radiat. Isot., 40, 1113–1118.[Crossref]
  • 6. Stachowicz, W., Burlinska, G., & Michalik, J. (1993). Applications of EPR spectroscopy to radiation treated materials in medicine, dosimetry and agriculture. Appl. Radiat. Isot., 44, 423–427.[Crossref]
  • 7. Stachowicz, W., Michalik, J., Burlinska, G., Sadlo, J., Dziedzic-Goclawska, A., & Ostrowski, K. (1995). Detection limits of absorbed dose of ionizing radiation in molluskan shells as determined by EPR spectroscopy. Appl. Radiat. Isot., 46, 1047–1052.[Crossref]
  • 8. Stachowicz, W., Sadlo, J., Strzelczak, G., Michalik, J., Bandiera, P., Mazzarello, V., Montella, A., Wojtowicz, A., Kaminski, A., & Ostrowski, K. (1999). Dating of paleoanthropological nuragic skeletal tissues using electron paramagnetic resonance (EPR) spectrometry. Int. J. Anat. Embryol., 109, 19–31.
  • 9. Bhatti, I. A., Akram, K., & Kwon, J.-H. (2012). An investigation into gamma-ray treatment of shellfish using electron paramagnetic resonance spectroscopy. J. Sci. Food Agric., 92, 759–763.[Crossref][WoS]
  • 10. Strzelczak, G., Vanhaelewyn, G., Stachowicz, W., Goovaerts, E., Callens, F., & Michalik, J. (2001). Multifrequency EPR study of carbonate and sulfate-derived radicals produced by radiation in shells and corallite. Radiat. Res., 155, 619–624.[Crossref]
  • 11. Wencka, M., Lijewski, S., & Hoffmann, S. K. (2008). Dynamics of CO2− radiation defects in natural calcite studied by ESR, electron spin echo and electron spin relaxation. J. Phys.-Condens. Matter, 20, 255237(10pp.).[WoS][Crossref]
  • 12. Jaegermann, Z., Michałowski, S., Karaś, J., & Polesiński, Z. (2002). Preparation of synthetic biomaterials based on calcium carbonate. Szkło i Ceramika, 4, 3–9 (in Polish).
  • 13. Bogushevich, S. E., & Ugolev, I. I. (2005). Stabilization of ion-radicals in the structure of calcium sulfite. J. Appl. Spectr., 72, 419–425.[Crossref]
  • 14. Debuyst, R., Dejehet, F., & Idrissi, S. (1993). Isotropic CO3− and CO2− radicals in γ-irradiated monohydrocalcite. Radiat. Prot. Dosim., 47, 659–664.
  • 15. DeCanniere, P., Debuyst, R., Dejeht, F., & Apers, D. (1988). ESR study of internally α-irradiated (210Po nitrate doped) calcite single crystal. Nucl. Tracks, 14, 267–273.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0076
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.