PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 411-416
Article title

Magnetic resonance study of co-modified (Co,N)-TiO2 nanocomposites

Content
Title variants
Languages of publication
EN
Abstracts
EN
Three nCo,N-TiO2 nanocomposites (where cobalt concentration index n = 1, 5 and 10 wt %) were prepared and investigated by magnetic resonance spectroscopy at room temperature. Ferromagnetic resonance (FMR) lines of magnetic cobalt agglomerated nanoparticle were dominant in all registered spectra. The relaxation processes and magnetic anisotropy of the investigated spin system essentially depended on the concentration of cobalt ions. It is suggested that the samples contained two magnetic types of sublattices forming a strongly correlated spin system. It is suggested that the existence of strongly correlated magnetic system has an essential influence of the photocatalytic properties of the studied nanocomposites.
Publisher
Journal
Year
Volume
60
Issue
3
Pages
411-416
Physical description
Dates
published
1 - 7 - 2015
accepted
30 - 1 - 2015
online
6 - 8 - 2015
received
7 - 10 - 2014
References
  • 1. Kim, D. H., Yang, J. S., Lee, K. W., Bu, S. D., Noh, T. W., Oh, S.-J., Kim, Y. -W., Chung, J. -S., Tanaka, H., Lee, H. Y., & Kawai, T. (2002). Formation of Co nanoclusters in epitaxial Ti0.96Co0.04O2 thin films and their ferromagnetism. Appl. Phys. Lett., 81, 2421–2423.
  • 2. Punnoose, A., Seehra, M. S., Park, W. K., & Moodera, J. S. (2003). On the room temperature ferromagnetism in Co-doped TiO2 films. J. Appl. Phys., 93, 7867–7869.
  • 3. Santara, B., Pal, B., & Giri, P. K. (2011). Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys., 110, 114322.
  • 4. Hong, N. H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., & Gervais, F. (2004). Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B, 70, 195204.
  • 5. Griffin, K. A., Pakhomov, A. B., Wang, C. M., Heald, S. M., & Krishnan Kannan, M. (2005). Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett., 94, 157204.[Crossref]
  • 6. Sangaletti, L., Mozzati, M. C., Galinetto, P., Azzoni, C. B., Speghini, A., Bettinelli, M., & Calestani, G. (2006). Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO2 single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu). J. Phys.-Condens. Matter, 18, 7643–7650.[Crossref]
  • 7. Nefedov, A., Akdogan, N., Zabel, H., Khaibullin, R. I., & Tagirov, L. R. (2006). Spin polarization of oxygen atoms in ferromagnetic Co-doped rutile TiO2. Appl. Phys. Lett., 89, 182509.
  • 8. Park, Y. R., Choi, S., Lee, J. H., Kim, K. J., & Kim, C. S. (2007). Ferromagnetic properties of Ni-doped rutile TiO2−δ. J. Korean Phys. Soc., 50, 638–642.
  • 9. Kim, D., Hong, J., Park, Y. R., & Kim, K. J., (2009). The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys.-Condens. Matter, 21, 195405(4pp.).[Crossref][WoS]
  • 10. Li, H., Liu, M., Zeng, Y., & Huang, T. (2010). Coexistence of antiferromagnetic and ferromagnetic in Mn-doped anatase TiO2 nanowires. J. Cent. South Univ., 17, 239–243.[WoS]
  • 11. Green, I. X., Tang, W., Neurock, M., & Yates, J. T. Jr (2011). Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science, 333, 736–739.
  • 12. Mudarra Navarro, A. M., Bilovol, V., Cabrera, A. F., & Rodriguez Torres, C. E. (2012). Relationship between structural and magnetic properties in (Ti,Fe) O2 powders obtained by mechanical milling. Physica B, 407, 3225–3228.
  • 13. Zhao, Y. L., Motapothula, M., Yakovlev, N. L., Liu, Z. Q., Dhar, S., Rusydi, A., Ariando, Breese, M. B. H., Wang, Q., & Venkatesan, T. (2012). Reversible ferromagnetism in rutile TiO2 single crystals induced by nickel impurities. Appl. Phys. Lett., 101, 142105.[WoS]
  • 14. Parras, M., Varela, A., Cortes-Gil, R., Boulahya, K., Hernando, A., & Gonzales-Calbet, J. M. (2013). Room-temperature ferromagnetism in reduced rutile TiO2−δ nanoparticles. J. Phys. Chem. Lett., 4, 2171–2176.[Crossref]
  • 15. Nakai, I., Sasano, M., Inui, K., Korekawa, T., Ishijima, H., Katoh, H., Li, Y. J., & Kurisu, M. (2013). Oxygen vacancy and magnetism of a room temperature ferromagnet Co-doped TiO2. J. Korean Phys. Soc., 63, 532–537.[WoS]
  • 16. Choudhury, B., & Choudhury, A. (2013). Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater. Sci. Eng. B, 178, 794–800.
  • 17. Santara, B., Giri, P. K., Dhara, S., Imakita, K., & Fuji, M. (2014). Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D-Appl. Phys., 47, 235304(14pp.).[WoS]
  • 18. Dolat, D., Mozia, S., Ohtani, B., & Morawski, A. W. (2013). Nitrogen, iron-single modified (N-TiO2, Fe-TiO2) and co-modified (Fe,N-TiO2) rutile titanium dioxide as visible-light active photocatalysts. Chem. Eng. J., 225, 358–364.
  • 19. Guskos, N., Glenis, S., Zolnierkiewicz, G., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Grzmil, B., Ohtani, B., & Morawski, A. W. (2014). Magnetic resonance study of co-modified (Fe,N)-TiO2. J. Alloy. Compd., 606, 32–36.
  • 20. Coronado, J. M., Maira, A. J., Conesa, J. C., Yeung, K. L., Augugliaro, V., & Soria, J. (2001). EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir, 17, 5368–5374.
  • 21. Mele, G., Del Sole, R., Vasapollo, G., Marci, G., Garcia-Lopez, E., Palmisano, L., Coronado, J. M., Hernandez-Alonso, M. D., Malitesta, C., & Guascito, M. R. (2005). TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension. J. Phys. Chem. B, 109, 12347–12352.
  • 22. Yang, S., Halliburton, L. E., Manivannan, A., Bunton, P. H., Baker, D. B., Klemm, M., Horn, S., & Fujishima, A. (2009). Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: Oxygen vacancies and Ti3+ ions. Appl. Phys. Lett., 94, 162114(3pp.).[Crossref]
  • 23. Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., & Zhang, J. (2009). Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J., 151, 220–227.
  • 24. Brandao, F. D., Pinheiro, M. V. B., Ribeiro, G. M., Medeiros-Ribeiro, G., & Krambrock, K. (2009). Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2. Phys. Rev. B, 80, 235204.
  • 25. Yang, S., Brant, A. T., & Halliburton, L. E. (2010). Photoinduced self-trapped hole center in TiO2 crystals. Phys. Rev. B, 82, 035209.[Crossref][WoS]
  • 26. Macdonald, I. R., Howe, R. F., Zhang, X., & Zhou, W. (2010). In situ EPR studies of electron trapping in a nanocrystalline rutile. J. Photochem. Photobiol. A-Chem., 216, 238–243.
  • 27. Shkrob, I. A., Marin, T. W., Chemerisov, S. D., & Sewilla, M. D. (2011). Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides. J. Phys. Chem. C, 115, 4642–4648.[WoS]
  • 28. Guskos, N., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Grzmil, B., & Morawski, A. (2012). Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Mater. Sci. Eng. B, 177, 223–227.
  • 29. Guskos, N., Typek, J., Guskos, A., Berczynski, P., Dolat, D., Grzmil, B., & Morawski, A. (2013). Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles. Cent. Eur. J. Chem., 11, 1996–2004.[Crossref]
  • 30. Guskos, N., Zolnierkiewicz, G., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Mozia, S., & Morawski, A. W. (2015). Magnetic resonance study of nickel and nitrogen co-modified titanium dioxide nanocomposites. In NATO Science for Peace and Security Series – C: Environmental Security, “Nanotechnology in the security systems”, 29 September – 3 October 2013 (pp. 33–48). Dordrecht: Springer.
  • 31. Dolat, D., Mozia, S., Wrobel, R. J., Moszynski, D., Ohtani, B., Guskos, N., & Morawski, A. W. (2015). Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B-Environ., 162, 310–318.[WoS]
  • 32. Guskos, N., Anagnostakis, E. A., Gasiorek, G., Typek, J., Bodzionny, T., Narkiewicz, U., Arabczyk, W., & Konicki, W. (2004). Magnetic resonance study of α-Fe and Fe3C nanoparticle agglomerates in a nonmagnetic matrix. Mol. Phys. Rep., 39, 58–65.
  • 33. Guskos, N., Typek, J., Maryniak, M., Narkiewicz, U., Kucharewicz, I., & Wrobel, R. (2005). FMR study of agglomerated nanoparticles in a Fe3C/C system. Materials Science-Poland, 23, 1001–1008.
  • 34. Helminiak, A., Arabczyk, W., Zolnierkiewicz, G., Guskos, N., & Typek, J. (2011). FMR study of the influence of carburization levels by methane decomposition on nanocrystalline iron. Rev. Adv. Mater. Sci., 29, 166–174.
  • 35. Kliava, J. (2009). Electron magnetic resonance of nanoparticles: Superparamagnetic resonance. In S. P. Gubin (Ed.), Magnetic nanoparticles (pp. 255–302). Wiley-VCH. Retrieved 15 September 2009, from .
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0073
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.