Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 3 | 405-410
Article title

Growth and EPR properties of ErVO4 single crystals

Title variants
Languages of publication
Single crystals of ErVO4 were grown by the Czochralski method under ambient pressure in a nitrogen atmosphere. Obtained crystals were transparent with strong pink coloring. Electron paramagnetic resonance (EPR) spectra were recorded as a function of the applied magnetic field. Temperature and angular dependences of the EPR spectra of the samples in the 3–300 K temperature range were analyzed applying both Lorentzian––Gauss approximation for diluted medium and Dyson for dense magnetic medium. EPR-NMR program was done to find local symmetry and spin Hamiltonian parameters of erbium ions.
Physical description
1 - 7 - 2015
19 - 9 - 2014
30 - 1 - 2015
6 - 8 - 2015
  • 1. Polosan, S., Bettinelli, M., & Tsuboi, T. (2007). Photoluminescence of Ho3+:YVO4 crystals. Phys. Status Solidi (c), 4(3), 1352–1355. DOI: 10.1002/pssc.200673749.[Crossref]
  • 2. Ohlsson, N., Krishna, R. M., & Kroll, S. (2002). Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt. Commun., 201, 71–77. DOI: 10.1016/S0030-4018(01)01666-2.[Crossref]
  • 3. Terada, Y., Shimamura, K., Kochurikhin, V. V., Barashov, L. V., Ivanov, M. A., & Fukuda, T. (1996). Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth, 167, 369–372. DOI: 10.1016/0022-0248(96)00407-1.[Crossref]
  • 4. Guillot-Noel, O., Simons, D., & Gourier, D. (1999). EPR study of the multisite character of Nd3+ ions in zircon-type matrices YMO4 (M = V, P, As). J. Phys. Chem. Solids, 60, 555–565. DOI: 10.1016/S0022-3697(98)00299-6.[Crossref]
  • 5. Misra, S. K., Isbe, S., Capobianco, J. A., & Cavalli, E. (1999). Electron paramagnetic resonance of Er3+ doped in YVO4: hyperfine parameters. Chem. Phys., 240, 313–318. DOI: 10.1016/S0301-0104(98)00393-0.[Crossref]
  • 6. Will, G., Lugscheider, W., Zinn, W., & Patscheke, E. (2006). Neutron diffraction and susceptibility measurements on ErPO4 and ErVO4. Solid State Phys., 46(2), 597–601. DOI: 10.1002/pssb.2220460216.[Crossref]
  • 7. Range, K., & Meister, H. (1990). ErVO4-II, a scheelite-type high-pressure modification of erbium orthovanadate. Acta Crystallogr. C-Cryst. Struct. Commun., 46, 1093–1094. DOI: 10.1107/S0108270189014162.[Crossref]
  • 8. Misra, S. K., & Andronenko, S. I. (2001). EPR study of Er3+ crystal-field and Ho-165(3+)-Er3+ interactions in single crystals of HoxY1-xVO4 (x=0.02-1.00). Phys. Rev. B, 64, 094435-8. DOI: 10.1103/Phys-RevB.64.094435.
  • 9. Misra, S. K., & Andronenko, S. I. (1996). Effect of host paramagnetic ions on the Gd3+ EPR linewidth in diluted Van-Vleck paramagnets TmxLu1-xPO4 and HoxY1-xVO4 and EPR spectra of Er3+ in HoxY1-xVO4Phys. Rev. B, 53, 11631–11641. DOI: 10.1103/PhysRevB.53.11631.[Crossref]
  • 10. Abragam, A., & Bleanely, B. (1970). Electron paramagnetic resonance of transition ions. London: Oxford University Press.
  • 11. Oka, K., Unoki, H., Shibata, H., & Eisaki, H. (2006). Crystal growth of rare-earth orthovanadate (RVO4) by the floating-zone method. J. Cryst. Growth, 286, 288–293. DOI: 10.1016/j.jcrysgro.2005.08.058.[Crossref]
  • 12. Mombourquette, M. J., Weil, J. A., & McGavi, D. G. (1999). EPR-NMR User’s manual. Saskatoon, Canada: Department of Chemistry, University of Saskatchewan.
  • 13. Pool, C. P., & Farach, H. A. (1979). Lineshapes in electron spin resonance. Bull. Magn. Reson., 1(4), 162–194.
  • 14. Dyson, F. J. (1955). Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev., 98, 337–359. DOI: 10.1103/PhysRev.98.349.[Crossref]
  • 15. Benner, H., Brodehl, M., Seitz, H., & Wiese, J. (1983). Influence of nondiagonal dynamic susceptibility on the EPR signal of Heisenberg magnet. J. Phys. C-Solid State Phys., 16, 6011–6030. .
  • 16. Choukroun, J., Richard, J.-L., & Stepanov, A. (2003). Electron paramagnetic resonance in weakly anisotropic Heisenberg magnets with a symmetric anisotropy. Phys. Rev. B, 68, 144415-10. DOI: 10.1103/Phys-RevB.68.144415.[Crossref]
  • 17. Weil, J. A., & Bolton, J. R. (2007). Electron paramagnetic resonance. Hoboken, New Jersey: John Wiley & Sons Inc.
  • 18. Ranon, U. (1968). Paramagnetic resonance of Nd3+, Dy3+, Er3+ and Yb3+ in YVO4. Phys. Lett. A, 28, 228–229. DOI: 10.1016/0375-9601(68)90218-1.[Crossref]
  • 19. Bravo, D., Martin, A., & Lopez, F. J. (1999). A new EPR centre of Er3+ in MgO or ZnO co-doped LiNbO3 single crystals. Solid State Commun., 112, 541–554. DOI: 10.1016/S0038-1098(99)00395-6.[Crossref]
  • 20. Misra, S. K., Chang, Y., & Felsteiner, J. (1997). A calculation of effective g-tensor values for R3+ ions in RBa2Cu3O7-δ and RBa2Cu4O8 (R = rare earth): Low temperature ordering of rare-earth moments. J. Phys. Chem. Solids, 58, 1–11. DOI: 10.1016/S0022-3697(96)00110-2.[Crossref]
  • 21. Chai, R.-P., Kuang, X.-Y., Li, C.-G., & Zhao, Y.-R. (2011). Theoretical studies of EPR spectra and defect structure for three Er3+ centers in thorium dioxide. Chem. Phys. Lett., 505, 65–70. DOI: 10.1016/j.cplett.2011.02.013.[Crossref]
  • 22. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751–767. DOI: 10.1107/S0567739476001551.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.