PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 405-410
Article title

Growth and EPR properties of ErVO4 single crystals

Content
Title variants
Languages of publication
EN
Abstracts
EN
Single crystals of ErVO4 were grown by the Czochralski method under ambient pressure in a nitrogen atmosphere. Obtained crystals were transparent with strong pink coloring. Electron paramagnetic resonance (EPR) spectra were recorded as a function of the applied magnetic field. Temperature and angular dependences of the EPR spectra of the samples in the 3–300 K temperature range were analyzed applying both Lorentzian––Gauss approximation for diluted medium and Dyson for dense magnetic medium. EPR-NMR program was done to find local symmetry and spin Hamiltonian parameters of erbium ions.
Keywords
Publisher
Journal
Year
Volume
60
Issue
3
Pages
405-410
Physical description
Dates
published
1 - 7 - 2015
received
19 - 9 - 2014
accepted
30 - 1 - 2015
online
6 - 8 - 2015
References
  • 1. Polosan, S., Bettinelli, M., & Tsuboi, T. (2007). Photoluminescence of Ho3+:YVO4 crystals. Phys. Status Solidi (c), 4(3), 1352–1355. DOI: 10.1002/pssc.200673749.[Crossref]
  • 2. Ohlsson, N., Krishna, R. M., & Kroll, S. (2002). Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt. Commun., 201, 71–77. DOI: 10.1016/S0030-4018(01)01666-2.[Crossref]
  • 3. Terada, Y., Shimamura, K., Kochurikhin, V. V., Barashov, L. V., Ivanov, M. A., & Fukuda, T. (1996). Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth, 167, 369–372. DOI: 10.1016/0022-0248(96)00407-1.[Crossref]
  • 4. Guillot-Noel, O., Simons, D., & Gourier, D. (1999). EPR study of the multisite character of Nd3+ ions in zircon-type matrices YMO4 (M = V, P, As). J. Phys. Chem. Solids, 60, 555–565. DOI: 10.1016/S0022-3697(98)00299-6.[Crossref]
  • 5. Misra, S. K., Isbe, S., Capobianco, J. A., & Cavalli, E. (1999). Electron paramagnetic resonance of Er3+ doped in YVO4: hyperfine parameters. Chem. Phys., 240, 313–318. DOI: 10.1016/S0301-0104(98)00393-0.[Crossref]
  • 6. Will, G., Lugscheider, W., Zinn, W., & Patscheke, E. (2006). Neutron diffraction and susceptibility measurements on ErPO4 and ErVO4. Solid State Phys., 46(2), 597–601. DOI: 10.1002/pssb.2220460216.[Crossref]
  • 7. Range, K., & Meister, H. (1990). ErVO4-II, a scheelite-type high-pressure modification of erbium orthovanadate. Acta Crystallogr. C-Cryst. Struct. Commun., 46, 1093–1094. DOI: 10.1107/S0108270189014162.[Crossref]
  • 8. Misra, S. K., & Andronenko, S. I. (2001). EPR study of Er3+ crystal-field and Ho-165(3+)-Er3+ interactions in single crystals of HoxY1-xVO4 (x=0.02-1.00). Phys. Rev. B, 64, 094435-8. DOI: 10.1103/Phys-RevB.64.094435.
  • 9. Misra, S. K., & Andronenko, S. I. (1996). Effect of host paramagnetic ions on the Gd3+ EPR linewidth in diluted Van-Vleck paramagnets TmxLu1-xPO4 and HoxY1-xVO4 and EPR spectra of Er3+ in HoxY1-xVO4Phys. Rev. B, 53, 11631–11641. DOI: 10.1103/PhysRevB.53.11631.[Crossref]
  • 10. Abragam, A., & Bleanely, B. (1970). Electron paramagnetic resonance of transition ions. London: Oxford University Press.
  • 11. Oka, K., Unoki, H., Shibata, H., & Eisaki, H. (2006). Crystal growth of rare-earth orthovanadate (RVO4) by the floating-zone method. J. Cryst. Growth, 286, 288–293. DOI: 10.1016/j.jcrysgro.2005.08.058.[Crossref]
  • 12. Mombourquette, M. J., Weil, J. A., & McGavi, D. G. (1999). EPR-NMR User’s manual. Saskatoon, Canada: Department of Chemistry, University of Saskatchewan.
  • 13. Pool, C. P., & Farach, H. A. (1979). Lineshapes in electron spin resonance. Bull. Magn. Reson., 1(4), 162–194.
  • 14. Dyson, F. J. (1955). Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev., 98, 337–359. DOI: 10.1103/PhysRev.98.349.[Crossref]
  • 15. Benner, H., Brodehl, M., Seitz, H., & Wiese, J. (1983). Influence of nondiagonal dynamic susceptibility on the EPR signal of Heisenberg magnet. J. Phys. C-Solid State Phys., 16, 6011–6030. .
  • 16. Choukroun, J., Richard, J.-L., & Stepanov, A. (2003). Electron paramagnetic resonance in weakly anisotropic Heisenberg magnets with a symmetric anisotropy. Phys. Rev. B, 68, 144415-10. DOI: 10.1103/Phys-RevB.68.144415.[Crossref]
  • 17. Weil, J. A., & Bolton, J. R. (2007). Electron paramagnetic resonance. Hoboken, New Jersey: John Wiley & Sons Inc.
  • 18. Ranon, U. (1968). Paramagnetic resonance of Nd3+, Dy3+, Er3+ and Yb3+ in YVO4. Phys. Lett. A, 28, 228–229. DOI: 10.1016/0375-9601(68)90218-1.[Crossref]
  • 19. Bravo, D., Martin, A., & Lopez, F. J. (1999). A new EPR centre of Er3+ in MgO or ZnO co-doped LiNbO3 single crystals. Solid State Commun., 112, 541–554. DOI: 10.1016/S0038-1098(99)00395-6.[Crossref]
  • 20. Misra, S. K., Chang, Y., & Felsteiner, J. (1997). A calculation of effective g-tensor values for R3+ ions in RBa2Cu3O7-δ and RBa2Cu4O8 (R = rare earth): Low temperature ordering of rare-earth moments. J. Phys. Chem. Solids, 58, 1–11. DOI: 10.1016/S0022-3697(96)00110-2.[Crossref]
  • 21. Chai, R.-P., Kuang, X.-Y., Li, C.-G., & Zhao, Y.-R. (2011). Theoretical studies of EPR spectra and defect structure for three Er3+ centers in thorium dioxide. Chem. Phys. Lett., 505, 65–70. DOI: 10.1016/j.cplett.2011.02.013.[Crossref]
  • 22. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751–767. DOI: 10.1107/S0567739476001551.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0072
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.