Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 60 | 2 | 275-283

Article title

Heat load and deuterium plasma effects on SPS and WSP tungsten


Title variants

Languages of publication



Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS) and by water stabilized plasma spraying (WSP) technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns). Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.










Physical description


1 - 6 - 2015
22 - 6 - 2014
22 - 6 - 2015
31 - 10 - 2014


  • Institute of Plasma Physics ASCR, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic
  • Institute of Plasma Physics ASCR, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic
  • Institute of Plasma Physics ASCR, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic
  • Institute of Plasma Physics and Laser Microfusion (IPPLM), 23 Hery Str., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion (IPPLM), 23 Hery Str., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion (IPPLM), 23 Hery Str., 01-497 Warsaw, Poland
  • Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Na Slovance 2, 182 21 Prague 8, Czech Republic


  • 1. Stork, D., Agostini, P., Boutard, J. -L., Buckthorpe, D., Diegele, E., Dudarev, S. L., English, C., Federici, G., Gilbert, M. R., Gonzalez, S., Ibarra, A., Linsmeier, C., Puma, A. L., Marbach, G., Packer, L. W., Raj, B., Rieth, M., Tran, M. Q., Ward, D. J., & Zinkle, S. J. (2014). Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Eng. Des., 89(7/8), 1586–1594. .[Crossref][WoS]
  • 2. Wirtz, M., Linke, J., Pintsuk, G., Singheiser, L., & Zlobinski, M. (2013). Comparison of thermal shock damages induced by different simulation methods on tungsten. J. Nucl. Mater., 438(Suppl.), S833–S836. .[WoS]
  • 3. Linke, J. (2008). High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors. Trans. Fusion Sci. Technol., 53, S278–S287.
  • 4. Garkusha, I. E., Arkhipov, N. I., Klimov, N. S., Makhlaj, V. A., Safronov, V. M., Landman, I., & Tereshin, V. I. (2009). The latest results from ELM-simulation experiments in plasma accelerators. Phys. Scripta, T138, 014054. DOI: 10.1088/0031-8949/2009/T138/014054.[Crossref][WoS]
  • 5. Shu, W. M., Nakamichi, M., Alimov, V. K., Luo, G. N., Isobe, K., & Yamanishi, T. (2009). Deuterium retention, blistering and local melting at tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater., 390/391, 1017–1021. .[Crossref]
  • 6. Morgan, T. W., van Eden, G. G., de Kruif, T. M., van den Berg, M. A., Matějíček, J., Chráska, T., & De Temmerman, G. (2014). ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device. Phys. Scripta, T159, 014022. DOI: 10.1088/0031-8949/2014/T159/014022.[WoS][Crossref]
  • 7. Shirokova, V., Laas, T., Ainsaar, A., Priimets, J., Ugaste, Ü., Demina, E. V., Pimenov, V. N., Maslyaev, S. A., Dubrovsky, A. V., Gribkov, V. A., Scholz, M., & Mikli, V. (2013). Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots. J. Nucl. Mater., 43(1/3), 181–188. .[Crossref]
  • 8. Riesch, J., Buffiere, J. Y., Höschen, T., di Michiel, M., Scheel, M., Linsmeier, C., & You, J. H. (2013). In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Mater., 61(19), 7060–7071. .[Crossref][WoS]
  • 9. Nishijima, D., Sugimoto, T., Iwakiri, H., Ye, M. Y., Ohno, N., Yoshida, N., & Takamura, S. (2005). Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure. J. Nucl. Mater., 337/339, 927–931. .[Crossref]
  • 10. Yuan, Y., Greuner, H., Böswirth, B., Linsmeier, C., Luo, G. N., Fu, B. Q., Xu, H. Y., Shen, Z. J., & Liu, W. (2013). Surface modification of molten W exposed to high heat flux helium neutral beams. J. Nucl. Mater., 437(1/3), 297–302. .[Crossref]
  • 11. Ueda, Y., Coenen, J. W., De Temmerman, G., Doerner, R. P., Linke, J., Philipps, V., & Tsitrone, E. (2014). Research status and issues of tungsten plasma facing materials for ITER and beyond. Fusion Eng. Des., 89(7/8), 901–906. .[WoS][Crossref]
  • 12. Shin, K., Shuichi, T., Noriyasu, O., Dai, N., Hirotomo, I., & Naoaki, Y. (2007). Sub-ms laser pulse irradiation on tungsten target damaged by exposure to helium plasma. Nucl. Fusion, 47(9), 1358–1366. DOI: 10.1088/0029-5515/47/9/038.[WoS][Crossref]
  • 13. Matějíček, J., Kavka, T., Bertolissi, G., Ctibor, P., Vilémová, M., Mušálek, R., & Nevrlá, B. (2013). The role of spraying parameters and inert gas shrouding in hybrid water-argon plasma spraying of tungsten and copper for nuclear fusion applications. J. Therm. Spray Technol., 22(5), 744–755[Crossref][WoS]
  • 14. Hirai, T., Pintsuk, G., Linke, J., & Batilliot, M. (2009). Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures. J. Nucl. Mater., 390/391, 751–754. .[WoS][Crossref]
  • 15. Shu, W. M., Kawasuso, A., & Yamanishi, T. (2009). Recent findings on blistering and deuterium retention in tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater., 386/388, 356–359. .[Crossref]
  • 16. Mušálek, R., Matějíček, J., Vilémová, M., & Kovářík, O. (2010). Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal loading. J. Therm. Spray Technol., 19(1/2), 422–428. 10.1007/s11666-009-9362-x.
  • 17. Tan, J., Zhou, Z.-j., Zhu, X.-p., Guo, S.-q., Qu, D.-d., Lei, M.-k., & Ge, C.-c. (2012). Evaluation of ultrafine grained tungsten under transient high heat flux by high-intensity pulsed ion beam. Trans. Nonferrous Met. Soc. China., 22(5), 1081–1085. .[Crossref]
  • 18. Eliáš, M., Frgala, Z., Kudrle, V., Janča, J., & Brožek, V. (2004). Low temperature metallurgy of tungsten in plasma reactors. J. Adv. Oxidation Technol., 7(1), 91–97.
  • 19. Ohno, N., Kajita, S., Nishijima, D., & Takamura, S. (2007). Surface modification at tungsten and tungsten coated graphite due to low energy and high fluence plasma and laser pulse irradiation. J. Nucl. Mater., 363/365, 1153–1159. .[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.