Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 2 | 221-227

Article title

The source of X-rays and high-charged ions based on moderate power vacuum discharge with laser triggering

Content

Title variants

Languages of publication

EN

Abstracts

EN
The source of X-ray radiation with the energy of quanta that may vary in the range hν = 1÷12 keV was developed for studies in X-ray interaction with matter and modification of solid surfaces. It was based on a vacuum spark discharge with the laser triggering. It was shown in our experiments that there is a possibility to adjust X-ray radiation spectrum by changing the configuration of the electrode system when the energy stored in the capacitor is varied within the range of 1÷17 J. A comprehensive study of X-ray imaging and quanta energy was carried out. These experiments were carried out for the case of both direct and reverse polarity of the voltage on the electrodes. Additionally, ion composition of plasma created in a laser-triggered vacuum discharge was analyzed. Highly charged ions Zn(+21), Cu(+20) and Fe(+18) were observed.

Publisher

Journal

Year

Volume

60

Issue

2

Pages

221-227

Physical description

Dates

published
1 - 6 - 2015
received
15 - 7 - 2014
online
22 - 6 - 2015
accepted
7 - 1 - 2015

Contributors

  • Department of Plasma Physics (No. 21), National Research University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Str., 115409 Moscow, Russia, Tel.: +7 903 198 9517
  • Department of Plasma Physics (No. 21), National Research University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Str., 115409 Moscow, Russia, Tel.: +7 903 198 9517
  • Department of Laser Thermonuclear Fusion (No. 69), National Research University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Str., 115409 Moscow, Russia
  • Department of Laser Thermonuclear Fusion (No. 69), National Research University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Str., 115409 Moscow, Russia
  • Department of Plasma Physics (No. 21), National Research University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Str., 115409 Moscow, Russia, Tel.: +7 903 198 9517
  • Federal State Unitary Enterprise All-Russian Research Institute of Automatics SC “Rosatom” Company, Moscow 127055, Russia
  • Federal State Unitary Enterprise All-Russian Research Institute of Automatics SC “Rosatom” Company, Moscow 127055, Russia

References

  • 1. Korop, E. D., Meyerowitz, B. E., Sidel’nikov, J. V., & Sukhorukov, S. T. (1979). Micropinches in high-current diode. Sov. Phys. Usp., 129(1), 87–112.[Crossref]
  • 2. Georgescu, N., Serbanescu, C. G., & Sandolache, G. (2001). Reproducibility conditions for the pulsed X-ray emission in a vacuum spark discharge. Nukleonika, 46(Suppl. 1), 17–20.
  • 3. Korobkin, Yu. V., Paperny, V. L., Romanov, I. V., Rupasov, A. A., & Shikanov, A. S. (2008). Micropinches in laser induced moderate power vacuum discharge. Plasma Phys. Control. Fusion, 50, 1–14, DOI: 10.1088/0741-3335/50/6/065002.[WoS][Crossref]
  • 4. Korobkin, Yu. V., Romanov, I. V., Rupasov, A. A., & Shikanov, A. S. (2005). Vacuum discharge instability in laser initiation of the cathode spot. J. Tech. Phys., 75(9), 34–39.
  • 5. Baechler, S., Monnin, P., Aroua, A., Valley, J. F., Perrier, M., Trueb, P., & Verdun, F. R. (2010). Exposure in dental radiology: A comparison between intra-oral, panoramic and tomographic examinations. Radiat. Prot. Dosim., 139(1/3), 303–305.
  • 6. Bashutin, O. A., Alkhimova, M. A., Vovchenko, E. D., Dodulad, E. I., Savelov, A. S., & Sarancev, S. A. (2013). Effect of electrode system on the radiative characteristics of the vacuum spark. Plasma Phys., 39(11), 1006–1016.[WoS]
  • 7. Basov, N. G., Zaharenko, Yu. A., Rupasov, A. A., Slizkov, V. G., & Shikanov, A. S. (1989). The diagnostics of the dense plasma (pp. 127–130). Moscow: Nauka.
  • 8. Averin, M. S., Bajkov, A. Y., Bashutin, O. A., Vovchenko, E. D., & Savelov, A. S. (2006). Estimates of the electron temperature of the plasma discharge to weaken micropinch X-ray flux in the emulsion. Instrum. Exp. Tech., 2(1), 5.[Crossref]
  • 9. Dolgov, A. N., Savelov, A. S., & Salakhutdinov, G. Kh. (2008). Application of a spectrometer complex of equipment for x-ray diagnostics of plasma of pulse installations. Prikladnaya Fizika (Applied Physics), 5, 35–40.
  • 10. Bykovskii, Y. A., & Nevolin, V. N. (1985). Laser mass spectrometry. Moscow: Energoatomizdat.[PubMed]
  • 11. Basov, N. G., Zakharenkov, Y. A., Rupasov, A. A., Sklizkov, G. V., & Shikanov, A. C. (1989). Diagnosis of a dense plasma. Moscow: Nauka.
  • 12. Romanov, I. V., Paperny, V. L., Korobkin, V., Kiselev, N. G., Rusape, A. A., & Shikanov, A. S. (2013). Effect of laser pulse parameters on characteristic source of multiply charged ions of metals based on laser-induced spark average power. Lett. Tech. Phys., 39(8), 62–70.
  • 13. Bufetov, I. A., Bufetova, G. A., Kravtsov, S. B., Fyodorov, V. B., & Fomin, V. K. (1995). Heating of the plasma on a metal target by nanosecond pulses of the first, second and fourth harmonics Nd-laser. Quantum Electron., 25(8), 794–798.[Crossref]
  • 14. .

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0060
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.