PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 2 | 249-255
Article title

First dedicated observations of runaway electrons in the COMPASS tokamak

Content
Title variants
Languages of publication
EN
Abstracts
EN
Runaway electrons present an important part of the present efforts in nuclear fusion research with respect to the potential damage of the in-vessel components. The COMPASS tokamak a suitable tool for the studies of runaway electrons, due to its relatively low vacuum safety constraints, high experimental flexibility and the possibility of reaching the H-mode D-shaped plasmas. In this work, results from the first experimental COMPASS campaign dedicated to runaway electrons are presented and discussed in preliminary way. In particular, the first observation of synchrotron radiation and rather interesting raw magnetic data are shown.
Publisher
Journal
Year
Volume
60
Issue
2
Pages
249-255
Physical description
Dates
published
1 - 6 - 2015
received
12 - 6 - 2014
accepted
20 - 10 - 2014
online
22 - 6 - 2015
References
  • 1. Kikuchi, M., Lackner, K., & Tran, M. Q. (2012). Fusion physics (pp. 352–353). Vienna: IAEA.
  • 2. Pánek, R., Bilyková, P., Fuchs, V., Hron, M., Chráska, P., Pavlo, P., Stockel, J., Urban, J., Weinzettl, V., Zajac, J., & Zacek, F. (2006). Reinstallation of the COMPASS-D tokamak in IPP ASCR. Czech. J. Phys., 56(Suppl. 2), B125–B137. DOI: 10.1007/s10582-006-0188-1.[Crossref]
  • 3. Wilson, C. T. R. (1925). The acceleration of β-particles in strong electric fields such as those of Thunderclouds. Proc. Cambridge Philos. Soc., 22(04), 534–538. DOI: 10.1017/S0305004100003236.[Crossref]
  • 4. Solis, J. R. (2012, November 20). Disruption and runaway electrons in tokamaks. Lecture notes distributed in the unit Plasma Physics and Fusion Seminars, Universidad Carlos III de Madrid, Madrid, Spain.
  • 5. Dreicer, H. (1959). Electron and ion runaway in a fully ionized gas I. Phys. Rev., 115(2), 238–249. DOI: 10.1103/PhysRev.115.238.[Crossref]
  • 6. Connor, J. W., & Hestie, R. J. (1975). Relativistic limitations on runaway electrons. Nucl. Fusion, 15(3), 415–424. DOI: 10.1088/0029-5515/15/3/007.[Crossref]
  • 7. Fernandez-Gomez, I., Martin-Solis, J. R., & Sanchez, R. (2012). Perpendicular dynamics of runaway electrons in tokamak plasmas. Phys. Plasmas, 19, 102504. DOI: 10.1063/1.4757644.[WoS]
  • 8. Eriksson, L. -G., Helander, P., Andersson, F., Anderson, D., & Lisak, M. (2004). Current dynamics during disruptions in large tokamaks. Phys. Rev. Lett., 92(20), 205004. DOI: 10.1103/PhysRev-Lett.92.205004.[Crossref]
  • 9. Lu, H. W., Hu, L. Q., Li, Y. D., Zhong, G. Q., Lin, S. Y., Xu, P., & EAST Team. (2010). Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak. Chinese Phys. Lett., 19(12), 125201. DOI: 10.1088/1674-1056/19/12/125201.[Crossref]
  • 10. Chen, Z. Y., Wan, B. N., Ling, B. L., Gao, X., Du, Q., Ti, A., Lin, S. Y., & Sajjad, S. (2007). Runaway electron beam instability in slide-away discharges in the HT-7 tokamak. Chinese Phys. Lett., 24(11), 3195–3198. DOI: 10.1088/0256-307X/24/11/048.[Crossref][WoS]
  • 11. Knoepfel, H., & Spong, D. A. (1979). Runaway electrons in toroidal discharges. Nucl. Fusion, 19(6), 785–829. DOI: 10.1088/0029-5515/19/6/008.[Crossref]
  • 12. Papřok, R., Havlíček, J., Hron, M., Janky, F., Krlín, L., Stökel, J., & Kocmanová, L. (2012). Runaway electrons in COMPASS tokamak. In WDS’12 Proceedings, 29 May – 1 June 2012 (pp. 228–232). Prague, Czech Republic: Charles University.
  • 13. Gill, R. D., Alper, B., de Baar, M., Hender, T. C., Johnson, M. F., Riccardo, V., & contributors to the EFDA-JET Work programme. (2000). Behavior of disruption generated runaways in JET. Nucl. Fusion, 40(8), 1039–1044. DOI: 10.1088/0029-5515/42/8/312.[Crossref]
  • 14. Jakubowski, L., Plyusnin, V. V., Sadowski, M. J., Zebrowski, J., Malinowski, K., Rabiński, M., Fernandes, H., Silva, C., Duarte, P., & Jakubowski, M. (2012). Estimation of ISTTOK runaway-electrons energies by means of a Cherenkov-type probe with modified AlN radiators. Nukleonika, 57(2), 177–181.
  • 15. Finken, K. H., Watkins, J. G., Rusbüldt, D., Corbett, W. J., Dippel, K. H., Goebel, D. M., & Moyer, R. A. (1990). Observation of infrared synchrotron radiation from tokamak runaway electrons in TEXTOR. Nucl. Fusion, 30(5), 859–870. DOI: 10.1088/0029-5515/30/5/005.[WoS][Crossref]
  • 16. Jaspers, R. (1995). Relativistic runaway electrons in tokamak plasmas. Doctoral thesis, Eindhoven University, The Netherlands.
  • 17. Stahl, A., Landreman, M., Papp, G., Hollmann, E., & Fulop, T. (2013). Synchrotron radiation from a runaway electron distribution in tokamaks. Phys. Plasmas, 20, 093302. DOI: 10.1063/1.4821823.[WoS]
  • 18. Havlíček, J., & Hronová, O. (2010). Magnetic diagnostics of COMPASS tokamak. Retrieved June 5th, 2014, from .
  • 19. Papřok, R., Krlín, L., & Stökel, J. (2013). Observation and prediction of runaway electrons in the COMPASS tokamak. In WDS’13 Proceedings, 4–7 June 2013 (pp. 60–66). Prague, Czech Republic: Charles University.
  • 20. Jakubowski, L., Sadowski, M. J., Stanislawski, J., Malinowski, K., Zebrowski, J., Jakuwoski, M., Weinzettl, V., Stökel, J., Vacha, M., & Peterka, M. (2007). Application of Cherenkov detectors for fast electron measurements in CASTOR-tokamak. In 34th EPS Conference on Plasma Physics, 2–6 July 2007 (P- 5.097). Warsaw, Poland: European Physical Society.
  • 21. Jakubowski, L., Sadowski, M. J., Stanislawski, J., Malinowski, K., Zebrowski, J., Jakuwoski, M., Weinzettl, V., Stökel, J., Vacha, M., & Peterka, M. (2008). Cherenkov detector for measurements of fast electrons in CASTOR-tokamak. In AIP’08 Conference Proceedings, 22–24 October 2007 (pp. 219–223). Lisbon, Portugal: American Institute of Physics.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0052
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.