PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 2 | 207-212
Article title

Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Many parameters of non-equilibrium plasma generated by high intensity and fast lasers depend on the pulse intensity and the laser wavelength. In conditions favourable for the target normal sheath acceleration (TNSA) regime the ion acceleration from the rear side of the target can be enhanced by increasing the thin foil absorbance through the use of nanoparticles and nanostructures promoting the surface plasmon resonance effect. In conditions favourable for the backward plasma acceleration (BPA) regime, when thick targets are used, a special role is played by the laser focal position with respect to the target surface, a proper choice of which may result in induced self-focusing effects and non-linear acceleration enhancement. SiC detectors employed in the time-of-flight (TOF) configuration and a Thomson parabola spectrometer permit on-line diagnostics of the ion streams emitted at high kinetic energies. The target composition and geometry, apart from the laser parameters and to the irradiation conditions, allow further control of the plasma characteristics and can be varied by using advanced targets to reach the maximum ion acceleration. Measurements using advanced targets with enhanced the laser absorption effect in thin films are presented. Applications of accelerated ions in the field of ion source, hadrontherapy and nuclear physics are discussed.
Publisher
Journal
Year
Volume
60
Issue
2
Pages
207-212
Physical description
Dates
published
1 - 6 - 2015
received
13 - 6 - 2014
accepted
14 - 11 - 2014
online
22 - 6 - 2015
References
  • 1. Gammino, S., Torrisi, L., Andò, L., Ciavola, G., Celona, L., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Woryna, E., Wolowski, J., Parys,. P., & Shirkov, G. D. (2002). Production of low energy, high intensity metal ion beams by means of a laser ion source. Rev. Sci. Instrum., 73(2), 650–653.
  • 2. Torrisi, L., Cavallaro, S., Cutroneo, M., Giuffrida, L., Krasa, J., Margarone, D., Velyhan, A., Kravarik, J., Ullschmied, J., Wolowski, J., Szydlowski, A., & Rosinski, M. (2012). Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma. Rev. Sci. Instrum., 83, 02B111-4. DOI: 10.1063/1.3671741.[WoS][Crossref]
  • 3. Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D., & Bychenkov, V. Yu. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett., 84, 4108–4111. .[Crossref]
  • 4. Andò, L., Torrisi, L., Gammino, S., & et al. (2003). Laser ion source for multile Ta ion implantation. In Gammino-Mezzasalma-Neri-Torrisi (Eds.) Proceedings of PPLA2003, September 2003, Messina (pp. 142–148). Singapore: World Scientific Publ.
  • 5. Cirrone, G. A. P., Carpinelli, M., Cuttone, G., Gammino, G., Bijan Jia, S., Korn, G., Maggiore, M., Manti, L., Margarone, D., Prokupek, J., Renis, M., Romano, F., Schillaci, F., Tomasello, B., Torrisi, L., Tramontana, A., & Velyhan, A. (2013). ELIMED, future hadrontherapy applications of laser-accelerated beams. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 730, 174–177. DOI: 10.1016/J.nima.2013.05.051.[Crossref]
  • 6. Torrisi, L., Caridi, F., Giuffrida, L., Torrisi, A., Mondio, G., Serafino, T., Caltabiano, M., Castrizio, E. D., Paniz, E., & Salici, A. (2010). LAMQS analysis applied to ancient Egyptian bronze coins. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268, 1657–1664. DOI: 10.1016/j.nimb.2010.03.015.[Crossref]
  • 7. Eliezer, S. (2002). The interaction of high-power lasers with plasmas. Bristol: IOP.
  • 8. Laska, L., Cavallaro, S., Jungwirth, K., Krasa, J., Krousky, E., Margarone, D., Mezzasalma, A., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A., & Verona-Rinati, G. (2009). Experimental studies of emission of highly charged Au-ions and of X-rays from the laser-produced plasma at high laser intensities. Eur. Phys. J. D, 54, 487–492. .[Crossref]
  • 9. Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J., Hora, H., Krása, J., Láska, L., & Rohlena, K. (2004). Production of ultrahigh ion current densities at skin-layer subrelativistic laser–plasma interaction. Plasma Phys. Contr. Fusion, 46(12B), 044, 83111-7. DOI: 10.1088/0741-3335/46/12B/044.[Crossref]
  • 10. Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G., & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 1367-1-13. DOI: 10.1088/1367-2630/10/1/013021.[Crossref]
  • 11. Garcia, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D-Appl. Phys., 44, 283001(20pp.). DOI: 10.1088/0022-3727/44/28/283001.[WoS][Crossref]
  • 12. Wen, L., Li, X., Zhao, Z., Bu, S., Zeng, X.S., Huang, J., & Wang, Y. (2012). Theoretical consideration of III–V nanowire/Si triple-junction solar cells. Nanotechnology, 23(50), 505202–505211. DOI: 10.1088/0957-4484/23/50/505202.[Crossref][WoS]
  • 13. Nanopartz™ Bare Gold Nanorodz. (2014). .
  • 14. Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J., & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams, 26, 379–387. .[Crossref][WoS]
  • 15. Vector Field Software. (2014). .
  • 16. Thum-Jager, A., & Rohr, K. (1999). Angular emission distributions of neutrals and ions in laser ablated particle beams. J. Phys. D-Appl. Phys., 32, 2827–2832. DOI: 10.1088/0022-3727/32/21/318.[Crossref]
  • 17. Torrisi, L., Cutroneo, M., Andò, L., & Ullschmied, J. (2013). Thomson parabola spectrometry for gold laser-generated plasmas. J. Phys. Plasmas, 20, 023106-1-7. .[WoS][Crossref]
  • 18. Láska, L., Badziak, J., Jungwirth, K., Kálal, M., Krása, J., Krouský, E., Kubeš, P., Margarone, D., Parys, P., Pfeifer, M., Rohlena, K., Rosinski, M., Ryc, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A., & Wolowski, J. (2010). Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas. Radiat. Eff. Defects Solids, 165(6/10), 463–471. DOI: 10.1080/10420151003718550.[Crossref]
  • 19. Gammino, S., Torrisi, L., Consoli, F., Margarone, D., Celona, L., & Ciavola, G. (2008). Perspectives for the ECLISSE method with 3rd generation ECRIS. Radiat. Eff. Defects Solids, 163(4/6), 277–286. DOI: 10.1080/10420150701777868.
  • 20. Torrisi, L., Gammino, S., Mezzasalma, A. M., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Krása, J., Láska, L., Pfeifer, M., Rohlena, K., & Boody, F. P. (2003). Implantation of ions produced by the use of high power iodine laser. Appl. Surf. Sci., 217, 319–331. DOI: 10.1016/S0169-4332(03)00551-8.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0051
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.