Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 2 | 267-273
Article title

Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications

Title variants
Languages of publication
Tungsten is a prime candidate material for the plasma-facing components in future fusion devices, e.g. ITER and DEMO. Because of the harsh and complex loading conditions and the differences in material properties, joining of the tungsten armor to the underlying construction and/or cooling parts is a complicated issue. To alleviate the thermal stresses at the joint, a sharp interface may be replaced by a gradual one with a smoothly varying composition. In this paper, several techniques for the formation of tungsten-steel composites and graded layers are reviewed. These include plasma spraying, laser cladding, hot pressing and spark plasma sintering. Structure, composition and selected thermal and mechanical properties of representative layers produced by each of these techniques are presented. A summary of advantages and disadvantages of the techniques and an assessment of their suitability for the production of plasma-facing components is provided.
Physical description
1 - 6 - 2015
19 - 11 - 2014
22 - 6 - 2015
9 - 6 - 2014
  • 1. Pintsuk, G. (2012). Tungsten as a plasma-facing material. In R. J. M. Konings (Ed.), Comprehensive nuclear materials (pp. 551–581). Elsevier.
  • 2. Rieth, M., Dudarev, S. L., Gonzalez De Vicente, S. M., Aktaa, J., Ahlgren, T., Antusch, S., Armstrong, D. E. J., Balden, M., Baluc, N., Barthe, M. -F., Basuki, W. W., Battabyal, M., Becquart, C. S., Blagoeva, D., Boldyryeva, H., Brinkmann, J., Celino, M., Ciupinski, L., Correia, J. B., De Backer, A., Domain, C., Gaganidze, E., García-Rosales, C., Gibson, J., Gilbert, M. R., Giusepponi, S., Gludovatz, B., Greuner, H., Heinola, K., Höschen, T., Hoffmann, A., Holstein, N., Koch, F., Krauss, W., Li, H., Lindig, S., Linke, J., Linsmeier, Ch., López-Ruiz, P., Maier, H., Matějíček, J., Mishra, T. P., Muhammed, M., Muñoz, A., Muzyk, M., Nordlund, K., Nguyen-Manh, D., Opschoor, J., Ordás, N., Palacios, T., Pintsuk, G., Pippan, R., Reiser, J., Riesch, J., Roberts, S. G., Romaner, L., Rosinski, M., Sanchez, M., Schulmeyer, W., Traxler, H., Ureña, A., van der Laan, J. G., Veleva, L., Wahlberg, S., Walter, M., Weber, T., Weitkamp, T., Wurster, S., Yar, M. A., You, J. H., & Zivelonghi, A. (2013). Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater., 432(1/3), 482–500. DOI: 10.1016/j.jnucmat.2013.03.062.[Crossref][WoS]
  • 3. Missiaen, J. M., Raharijaona, J. J., Antoni, A., Pascal, C., Richou, M., & Magaud, P. (2011). Design of a W/steel functionally graded material for plasma facing components of DEMO. J. Nucl. Mater., 416(3), 262–269. DOI: 10.1016/j.jnucmat.2011.05.054.[WoS][Crossref]
  • 4. Weber, T., Stueber, M., Ulrich, S., Vaßen, R., Basuki, W. W., Lohmiller, J., Sittel, W., & Aktaa, J. (2013). Functionally graded vacuum plasma sprayed and magnetron sputtered tungsten/Eurofer97 interlayers for joints in helium-cooled divertor components. J. Nucl. Mater., 436(1/3), 29–39. DOI: 10.1016/j.jnucmat.2013.01.286.[WoS]
  • 5. Mušálek, R., Matějíček, J., Vilémová, M., & Kovářik, O. (2010). Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal loading. J. Therm. Spray Technol., 19(1/2), 422–428. DOI: 10.1007/s11666-009-9362-x.[Crossref]
  • 6. Vilémová, M., Matějíček, J., Mušálek, R., & Nohava, J. (2012). Application of structure-based models of mechanical and thermal properties on plasma sprayed coatings. J. Therm. Spray Technol., 21(3/4), 372–382. DOI: 10.1007/s11666-012-9739-0.[Crossref]
  • 7. Matějíček, J., Vilémová, M., Kavka, T., Ctibor, P., Mušálek, R., Medřický, J., & Iždinský, K. (2015). Tungsten-steel composites and FGMs prepared by hybrid water-argon plasma spraying. To appear in Surface and Coatings Technology.
  • 8. Matějíček, J., Chráska, P., & Linke, J. (2007). Thermal spray coatings for fusion applications – review. J. Therm. Spray Technol., 16(1), 64–83. DOI: 10.1007/s11666-006-9007-2.[Crossref]
  • 9. Hassanein, A., & Konkashbaev, I. (1996). Lifetime evaluation of plasma-facing materials during a tokamak disruption. J. Nucl. Mater., 233, 713–717. DOI: 10.1016/S0022-3115(96)00213-9.[Crossref]
  • 10. Matějíček, J., & Boldyryeva, H. (2009). Processing and temperature-dependent properties of plasma-sprayed tungsten-stainless steel composites. Phys. Scripta, T138, 014041. DOI: 10.1088/0031-8949/2009/T138/014041.[Crossref]
  • 11. Vilémová, M., Nevrlá, B., & Matějíček, J. (2012). Mechanical and thermal properties of tungsten composite coatings. In Coatings and layers (pp. 135–140). Trenčín: LISS.
  • 12. Matějíček, J., Boldyryeva, H., & Ambrož, P. (2015). Tungsten-steel composites and FGMs prepared by laser cladding. To appear in Fusion Science and Technology.
  • 13. Matějíček, J., Boldyryeva, H., Brožek, V., Čižmárová, E., & Pala, Z. (2012). Tungsten-steel composites and FGMs produced by hot pressing. In: 21st International Conference on Metallurgy and Materials METAL 2012 (paper no. 177). Ostrava, Tanger.
  • 14. Matějíček, J., Dlabáček, Z., Nevrlá, B., Vilémová, M., Dlabáček, Z., Pala, Z., Čech, J., Klevarová, V., Kocmanová, L., Haušild, P., & Cinert, J. (2015). Processing and properties of tungsten-steel composites and FGMs prepared by spark plasma sintering. To appear in Fusion Engineering and Design.
  • 15. Matějíček, J., Kavka, T., Bertolissi, G., Ctibor, P., Vilémová, M., Mušálek, R., & Nevrlá, B. (2013). The role of spraying parameters and inert gas shrouding in hybrid water-argon plasma spraying of tungsten and copper for nuclear fusion applications. J. Therm. Spray Technol., 22(5), 744–755. DOI: 10.1007/s11666-013-9895-x.[Crossref][WoS]
  • 16. Matějíček, J., Koza, Y., & Weinzettl, V. (2005). Plasma sprayed tungsten-based coatings and their performance under fusion relevant conditions. Fusion Eng. Des., 75(9), 395–399. DOI: 10.1016/j.fusengdes.2005.06.006.[Crossref]
  • 17. Matějíček, J., Iždinský, K., & Vondrouš, P. (2009). Methods of increasing thermal conductivity of plasma sprayed tungsten-based coatings. Adv. Mater. Res., 59, 82–86.
  • 18. Matějíček, J., & Holub, P. (2014). Laser remelting of plasma-sprayed tungsten coatings. J. Therm. Spray Technol., 23(4), 750–754. DOI: 10.1007/s11666-014-0067-4.[Crossref]
  • 19. Laser cladding. Retrieved May 27, 2014 from .
  • 20. Weber, T., Zhou, Z., Qu, D., & Aktaa, J. (2011). Resistance sintering under ultra high pressure of tungsten/Eurofer97 composites. J. Nucl. Mater., 414(1), 19–22. DOI: 10.1016/j.jnucmat.2011.04.024.[WoS][Crossref]
  • 21. Weber, T., & Aktaa, J. (2011). Numerical assessment of functionally graded tungsten/steel joints for divertor applications. Fusion Eng. Des., 86(2/3), 220–226. DOI: 10.1016/j.fusengdes.2010.12.084.[WoS][Crossref]
  • 22. Aktaa, J., Basuki, W. W., Weber, T., Norajitra, P., Krauss, W., & Konys, J. (2014). Manufacturing and joining technologies for helium cooled divertors. Fusion Eng. Des., 89(7/8), 913–920. DOI: 10.1016/j.fusengdes.2014.01.028.[Crossref][WoS]
  • 23. Matějíček, J., Vilémová, M., Mušálek, R., Sachr, P., & Horník, J. (2013). The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coatings. Coatings, 3(2), 108–125. DOI: 10.3390/coatings3020108.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.