Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 60 | 2 | 233-237

Article title

Hot electron refluxing in the short intense laser pulse interactions with solid targets and its influence on K-α radiation


Title variants

Languages of publication



Fast electrons created as a result of the laser beam interaction with a solid target penetrate into the target material and initialize processes leading to the generation of the characteristic X-ray K-α radiation. Due to the strong electric field induced at the rear side of a thin target the transmitted electrons are redirected back into the target. These refluxing electrons increase the K-α radiation yield, as well as the duration of the X-ray pulse and the size of the radiation emitting area. A model describing the electron refluxing was verified via particle-in-cell simulations for non-relativistic electron energies. Using this model it was confirmed that the effect of the electron refluxing on the generated X-ray radiation depends on the target thickness and the target material. A considarable increase of the number of the emitted K-α photons is observed especially for thin targets made of low-Z materials, and for higher hot electron temperatures.










Physical description


1 - 6 - 2015
11 - 7 - 2014
14 - 11 - 2014
22 - 6 - 2015


  • Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague 1, Czech Republic and Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic, Tel.: +42026 605 2585, Fax: +42028 658 6142
  • Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague 1, Czech Republic


  • 1. Gahn, C., Tsakiris, G. D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D., & White, K. J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett., 83(23), 4772.[Crossref]
  • 2. Gibbon, P., Mašek, M., Teubner, U., Lu, W., Nicoul, M., Shymanovich, U., Tarasevitch, A., Zhou, P., Sokolowski-Tinten, K., & von der Linde, D. (2009). Modelling and optimisation of fs laser-produced Kα sources. Appl. Phys. A, 96(1), 23–31.
  • 3. Volpe, L., Batani, D., Morace, A., & Santos, J. J. (2013). Collisional and collective effects in two dimensional model for fast-electron transport in refluxing regime. Phys. Plasmas, 20(1), 013104.[Crossref][WoS]
  • 4. Lichters, R., Pfund, R. E., & Meyer-ter-Vehn, J. (1997). LPIC++: A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. Garching: Max-Planck-Institut für Quantenoptik. (MPQ 225). .
  • 5. Grismayer, T., Mora, P., Adam, J. C., & Héron, A. (2008). Electron kinetic effects in plasma expansion and ion acceleration. Phys. Rev. E, 77(6), 066407.
  • 6. Neumayer, P., Aurand, B., Basko, M., Ecker, B., Gibbon, P., Hochhaus, D. C., Karmakar, A., Kazakov, E., Kuhl, T., Labaune, C., Rosmej, O., Tauschwitz, An., Zielbauer, B., & Zimmer, D. (2010). The role of hot electron refluxing in laser-generated K-alpha sources. Phys. Plasmas, 17, 103103.[WoS][Crossref]
  • 7. Salvat, F., Fernández-Varea, J. M., & Sempau, J. (2006, July). PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport. In Workshop Proceedings (Vol. 4, p. 7).
  • 8. Vauzour, B., Debayle, A., Vaisseau, X., Hulin, S., Schlenvoigt, H. P., Batani, D., Baton, S. D., Honrubia, J. J., Nicolai, Ph., Beg, F. N., Benocci, R., Chawla, S., Coury, M., Dorchies, F., Fourment, C., d’Humieres, E., Jarrot, L. C., McKenna, P., Rhee, Y. J., Tikhonchuk, V. T., Volpe, L., Yahia, V., & Santos, J. J. (2014). Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas. Phys. Plasmas, 21(3), 033101.[Crossref][WoS]
  • 9. Davies, J. R. (2002). How wrong is collisional Monte Carlo modeling of fast electron transport in high-intensity laser-solid interactions? Phys. Rev. E, 65(2), 026407.
  • 10. Martinolli, E., Koenig, M., Baton, S. D., Santos, J. J., Amiranoff, F., Batani, D., Perelli-Cippo, E., Scianitti, F., Gremillet, L., Mélizzi, R., Decoster, A., Rousseaux, C., Hall, T. A., Key, M. H., Snavely, R., MacKinnon, A. J., Freeman, R. R., King, J. A., Stephens, R., Neely, D., & Clarke, R. J. (2006). Fast-electron transport and heating of solid targets in high-intensity laser interactions measured by Kα fluorescence. Phys. Rev. E, 73(4), 046402.
  • 11. Henke, B. L., Gullikson, E. M., & Davis, J. C. (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. Atom. Data Nucl. Data Tables, 54(2), 181–342.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.