Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 2 | 229-232
Article title

Numerical simulations of generation of high-energy ion beams driven by a petawatt femtosecond laser

Title variants
Languages of publication
This contribution presents results of a Particle-in-Cell simulation of ion beam acceleration via the interaction of a petawatt 25 fs laser pulse of high intensity (up to ~1021 W/cm2) with thin hydrocarbon (CH) and erbium hydride (ErH3) targets of equal areal mass density (of 0.6 g/m2). A special attention is paid to the effect that the laser pulse polarization and the material composition of the target have on the maximum ion energies and the number of high energy (>10 MeV) protons. It is shown that both the mean and the maximum ion energies are higher for the linear polarization than for the circular one. A comparison of the maximum proton energies and the total number of protons generated from the CH and ErH3 targets using a linearly polarized beam is presented. For the ErH3 targets the maximum proton energies are higher and they reach 50 MeV for the laser pulse intensity of 1021 W/cm2. The number of protons with energies higher than 10 MeV is an order of magnitude higher for the ErH3 targets than that for the CH targets.
Physical description
1 - 6 - 2015
16 - 9 - 2014
22 - 6 - 2015
9 - 1 - 2015
  • 1. Borghesi, M., Fuchs, J., Bulanov, S. V., MacKinnon, A. J., Patel, P. K., & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol., 49, 412 [and references therein].
  • 2. Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev., 15, 1. DOI: 10.2478/s11772-006-0048-3 [and references therein].[WoS][Crossref]
  • 3. Ledingham, K. W. D., & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New J. Phys., 12, 045005. DOI:10.1088/1367-2630/12/4/045005.[Crossref]
  • 4. Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A., & Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542. DOI: 10.1063/1.1333697.[WoS][Crossref]
  • 5. Zani, A., Sgattoni, A., & Passoni, M. (2011). Parametric investigations of target normal sheath acceleration experiments. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 653, 94–97.
  • 6. Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401. DOI: 10.1088/0034-4885/75/5/056401.[WoS][Crossref]
  • 7. Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751.[WoS]
  • 8. Passoni, M., Bertagna, L., & Zani, L. (2010). Target normal sheath acceleration: theory, comparison with experiments and future perspectives. New J. Phys., 12, 045012.
  • 9. Esirkepov, T., Borghesi, M., Bulanov, S. V., Mourou, G., & Tajima, T. (2004). Highly efficient relativisticion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003. DOI: 10.1103/PhysRev-Lett.92.175003.[Crossref]
  • 10. Macchi, A., Cattani, F., Liseykina, T. V., & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett., 94, 165003. DOI: 10.1103/PhysRevLett.94.165003.[Crossref]
  • 11. Badziak, J., Hora, H., Woryna, E., Jabłoński, S., Laśka, L., Parys, P., Rohlena, K., & Wołowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser–plasma interactions. Phys. Lett. A, 315, 452. DOI: 10.1016/S0375-9601(03)01101-0.[Crossref]
  • 12. Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J., & Mancic, A. (2008). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys., 104, 063310. DOI: 10.1063/1.2981199.[Crossref][WoS]
  • 13. Badziak, J., Mishra, G., Gupta, N. K., & Holkundkar, A. R. (2011). Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications. Phys. Plasmas, 18, 053108. DOI: 10.1063/1.3590856.[WoS][Crossref]
  • 14. Liseykina, T. V., & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett., 91, 171502. DOI: 10.1063/1.2803318.[Crossref]
  • 15. Klimo, O., Psikal, J., Limpouch, J., & Tikhonchuk, V. T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Spect. Top.-Accel. Beams, 11, 031301.[Crossref][WoS]
  • 16. Domański, J., Badziak, J., & Jabłoński, S. (2013). Effect of laser light polarization on generation of relativistic ion beams driven by an ultraintense laser. J. Appl. Phys., 113, 173302.[WoS]
  • 17. Foord, M. E., Mackinnon, A. J., Patel, P. K., MacPhee, A. G., Ping, Y., Tabak, M., & Town, R. P. J. (2008). Enhanced proton production from hydride-coated foils. J. Appl. Phys., 103, 056106.[WoS]
  • 18. Domański, J., Badziak, J., & Jabłoński, S. (2014). Particle-in-cell simulation of acceleration of ions to GeV energies in the interactions of an ultra-intense laser pulse with two-species targets. Phys. Scripta, T161, 014030.[WoS]
  • 19. .
  • 20. Badziak, J., & Jabłonski, S. (2010). Ultraintense ion beams driven by a short-wavelength short-pulse laser. Phys. Plasmas, 17, 073106. DOI: 10.1063/1.3458900.[Crossref][WoS]
  • 21. Lichters, R., Pfund, R. E. W., & Meyer-Ter-Vehn, J. (1997). LPIC++, A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. Garching: Max-Planck-Institut für Quantenoptik. (MPQ 225). .
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.