Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 2 | 213-219
Article title

Shock dynamics induced by double-spot laser irradiation of layered targets

Title variants
Languages of publication
We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS) iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.
Physical description
1 - 6 - 2015
11 - 7 - 2014
19 - 12 - 2014
22 - 6 - 2015
  • 1. Stevenson, R. M., Pepler, D. A., Danson, C. N., Norman, M. J., Bett, T. H., & Ross, I. N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett., 19(6), 363–365.
  • 2. Koenig, M., Faral, B., Boudenne, J. M., Batani, D., Benuzzi, A., & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E, 50(5), R3314.[Crossref]
  • 3. Batani, D., Bleu, C., & Lower, Th. (2002). Design, simulation and application of phase plates. Eur. Phys. J. D, 19, 231–243.[Crossref]
  • 4. Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M., & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53(11), 1057.[Crossref]
  • 5. Dixit, S. N., Lawson, J. K., Manes, K. R., Powell, H. T., & Nugent, A. (1994). Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19(6), 417–419.
  • 6. Skupsky, S., Short, R. W., & Kessler, T. (1989). Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys., 66, 3456.[Crossref]
  • 7. Lehmberg, R. H., & Obenschain, S. P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun., 46, 27–31.[Crossref]
  • 8. Willi, O., Afshar-rad, T., Coe, S., & Giulietti, A. (1990). Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques. Phys. Fluids, 2, 1318–1324.[Crossref]
  • 9. Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J. M., Grandjouan, N., Atzeni, S., & Temporalet, M. (1996). Optical smoothing for shock-wave generation: application to the measurement of equations of state. Laser Part. Beams, 14(2), 211–223.
  • 10. Montgomery, D. S., Moody, J. D., Baldis, H. A., Afeyan, B. B., Berger, R. L., Estabrook, K. G., Lasinski, B. F., Williams, E. A., & Labaune, C. (1996). Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas. Phys. Plasmas, 3(5), 1728. .[Crossref]
  • 11. Labaune, C., Baldis, H. A., Schifano, E., Bauer, B. S., Maximov, A., Ourdev, I., Rozmus, W., & Pesme, D. (2000). Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma. Phys. Rev. Lett., 85(8), 1658.[Crossref]
  • 12. Emery, M. H., Gardner, J. H., Lehmberg, R. H., & Obenschain, S. P. (1991). Hydrodynamic target response to an induced spatial incoherence-smoothed laser beam. Phys. Fluids B, 3, 2640–2650.[Crossref]
  • 13. Desselberger, M., Afshar-rad, T., Khattak, F., Viana, S., & Willi, O. (1992) Nonuniformity imprint on the ablation surface of laser-irradiated targets. Phys. Rev. Lett., 68(10), 1539.[Crossref]
  • 14. Batani, D., Balducci, A., Nazarov, W., Löwer, Th., Hall, T., Koenig, M., Faral, B., Benuzzi, A., & Temporal, M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E, 63(4), 046410.[Crossref]
  • 15. Batani, D., Nazarov, W., Hall, T., Löwer, Th., Koenig, M., Faral, B., Benuzzi-Mounaix, A., & Grandjouan, N. (2000). Foam smoothing studied through laser produced shocks. Phys. Rev. E, 62(6), 8573–8582.[Crossref]
  • 16. Benocci, R., Batani, D., Dezulian, R., Redaelli, R., Lucchini, G., Canova, F., Stabile, H., Faure, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Koenig, M., Tikhonchuk, V., Nicolaï, Ph., & Malka, V. (2009). Direct evidence of gas-induced laser beam smoothing in the interaction, with thin foils. Phys. Plasmas, 16(1), 012703. .[Crossref][WoS]
  • 17. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. .[Crossref]
  • 18. Zel’dovich, Ya. B., & Raizer, Yu. P. (2002). Physics of shock waves and high-temperature hydrodynamical phenomena. Dover, New York.
  • 19. Lindl, J. (1995). Development of indirect-drive approach to inertial confinement fusion and target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.[Crossref]
  • 20. Ramis, R., Meyer-ter-Vehn, J., & Ramírez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977–994.[WoS][Crossref]
  • 21. Aliverdiev, A., Batani, D., Dezulian, R., Vinci, T., Benuzzi-Mounaix, A., Koenig, M., & Malka, V. (2008). Hydrodynamics of laser-produced plasma corona by optical interferometry. Plasma Phys. Control. Fusion, 50, 105013.[WoS][Crossref]
  • 22. Aliverdiev, A., Batani, D., Antonelli, L., Jakubowska, K., Dezulian, R., Amirova, A., Gajiev, G., Khan, M., & Pant, H. C. (2014). Use of multilayer targets for achieving off-Hugoniot states. Phys. Rev. E, 89, 053101.[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.