Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 60 | 2 | 199-206

Article title

Selected methods of electron-and ion-diagnostics in tokamak scrape-off-layer


Title variants

Languages of publication



This invited paper considers reasons why exact measurements of fast electron and ion losses in tokamaks, and particularly i n a scrape-off-layer and near a divertor region, are necessary in order to master nuclear fusion energy production. Attention is also paid to direct measurements of escaping fusion products from D-D and D-T reactions, and in particular of fast alphas which might be used for plasma heating. The second part describes the generation of so-called runaway and ripple-born electrons which might induce high energy losses and cause severe damages of internal walls in fusion facilities. Advantages and disadvantages of different diagnostic methods applied for studies of such fast electrons are discussed. Particular attention is paid to development of a direct measuring technique based on the Cherenkov effect which might be induced by fast electrons in appropriate radiators. There are presented various versions of Cherenkov-type probes which have been developed by the NCBJ team and applied in different tokamak experiments. The third part is devoted to direct measurements of fast ions (including those produced by the nuclear fusion reactions) which can escape from a high-temperature plasma region. Investigation of fast fusion-produced protons from tokamak discharges is reported. New ion probes, which were developed by the NCBJ team, are also presented. For the first time there is given a detailed description of an ion pinhole camera, which enables irradiation of several nuclear track detectors during a single tokamak discharge, and a miniature Thomson-type mass-spectrometer, which can be used for ion measurements at plasma borders.











Physical description


1 - 6 - 2015
15 - 11 - 2014
16 - 6 - 2014
22 - 6 - 2015


  • Plasma Studies Division (TJ5), National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock/Swierk, Poland and Division of Magnetised Plasma, Institute of Plasma Physics and Laser Microfusion (IPPLM), 23 Hery Str., 01-497 Warsaw, Poland, Tel.: +48 22 718 0537, Fax: +48 22 779 3481


  • 1. Romanelli, F., & Laxaback, M. on behalf of the JET EFDA Contributors (2011). Overview of JET results. Nucl. Fusion, 51, 094008. DOI: 10.1088/0029-5515/51/9/094008.[Crossref]
  • 2. Park, H. K., Luhmann, N. C. Jr, Donne, A. J. H., Classen, I. G. J., Domier, C. W., Munsat, T., van der Pol, M. J., Xia, Z., & TEXTOR team (2006). Observations of high-field crash and heat transfer during sawtooth oscillation in magnetically confined plasmas. Phys. Rev. Lett., 96, 195003. DOI: 10.1103/PhysRevLett.96.195003.[Crossref]
  • 3. Classen, I. G. J., Boom, J. E., Suttrop, W., Schmid, E., Tobias, B., Domier, C. W., Luhmann, N. C. Jr, Donné, A. J. H., Jaspers, R. J. E., de Vries, P. C., Park, H. K., Munsat, T., García-Muñoz, M., & Schneider, P. A. (2010). 2D electron cyclotron emission imaging at ASDEX Uppgrade. Rev. Sci. Instrum., 81, 10D929. DOI: 10.1063/1.3483214.[Crossref]
  • 4. Frieman, E. A., & Chen, L. (1982). Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids, 25, 502–508. DOI: 10.1063/1.863762.[Crossref]
  • 5. Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E., & Schekochihin, A. A. (2006). Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J., 651, 590–614. DOI: 10.1086/506172.[Crossref]
  • 6. Hammett, G. W. (2008). Physical mechanisms driving gyrokinetic turbulence. In Vienna Gyrokinetic Workshop, 15–19 September 2008. Vienna, Austria. .
  • 7. Kallenbach, A., Adamek, J., Aho-Mantila, L., Äkäslompolo, S., Angioni, C., Atanasiu, C. V., Balden, M., Behler, K., Belonohy, E., Bergmann, A., Bernert, M., Bilato, R., Bobkov, V., Boom, J., Bottino, A., Braun, F., Brüdgam, M., Buhler, A., Burckhart, A., Chankin, A., Classen, I. G. J., Conway, G. D., Coster, D. P., de Marné, P., D’Inca, R., Drube, R., Dux, R., Eich, T., Endstrasser, N., Engelhardt, K., Esposito, B., Fable, E., Fahrbach, H. -U., Fattorini, L., Fischer, R., Flaws, A., Fünfgelder, H., Fuchs, J. C., Gál, K., García Muñoz, M., Geiger, B., Gemisic Adamov, M., Giannone, L., Giroud, C., Görler, T., da Graca, S., Greuner, H., Gruber, O., Gude, A., Günter, S., Haas, G., Hakola, A. H., Hangan, D., Happel, T., Hauff, T., Heinemann, B., Herrmann, A., Hicks, N., Hobirk, J., Höhnle, H., Hölzl, M., Hopf, C., Horton, L., Huart, M., Igochine, V., Ionita, C., Janzer, A., Jenko, F., Käsemann, C. -P., Kálvin, S., Kardaun, O., Kaufmann, M., Kirk, A., Klingshirn, H. -J., Kocan, M., Kocsis, G., Kollotzek, H., Konz, C., Koslowski, R., Krieger, K., Kurki-Suonio, T., Kurzan, B., Lackner, K., Lang, P. T., Lauber, P., Laux, M., Leipold, F., Leuterer, F., Lohs, A., Luhmann, N. C. Jr, Lunt, T., Lyssoivan, A., Maier, H., Maggi, C., Mank, K., Manso, M. -E., Maraschek, M., Martin, P., Mayer, M., McCarthy, P. J., McDermott, R., Meister, H., Menchero, L., Meo, F., Merkel, P., Merkel, R., Mertens, V., Merz, F., Mlynek, A., Monaco, F., Müller, H. W., Münich, M., Murmann, H., Neu, G., Neu, R., Nold, B., Noterdaeme, J. -M., Park, H. K., Pautasso, G., Pereverzev, G., Podoba, Y., Pompon, F., Poli, E., Polochiy, K., Potzel, S., Prechtl, M., Püschel, M. J., Pütterich, T., Rathgeber, S. K., Raupp, G., Reich, M., Reiter, B., Ribeiro, T., Riedl, R., Rohde, V., Roth, J., Rott, M., Ryter, F., Sandmann, W., Santos, J., Sassenberg, K., Sauter, P., Scarabosio, A., Schall, G., Schmid, K., Schneider, P. A., Schneider, W., Schramm, G., Schrittwieser, R., Schweinzer, J., Scott, B., Sempf, M., Serra, F., Sertoli, M., Siccinio, M., Sigalov, A., Silva, A., Sips, A. C. C., Sommer, F., Stäbler, A., Stober, J., Streibl, B., Strumberger, E., Sugiyama, K., Suttrop, W., Szepesi, T., Tardini, G., Tichmann, C., Told, D., Treutterer, W., Urso, L., Varela, P., Vincente, J., Vianello, N., Vierle, T., Viezzer, E., Vorpahl, C., Wagner, D., Weller, A., Wenninger, R., Wieland, B., Wigger, C., Willensdorfer, M., Wischmeier, M., Wolfrum, E., Würsching, E., Yadikin, D., Yu, Q., Zammuto, I., Zasche, D., Zehetbauer, T., Zhang, Y., Zilker, M., & Zohm, H. (2011). Overview of ASDEX Upgrade results. Nucl. Fusion, 51, 094012. DOI: 10.1088/0023-5515/51/9/094012.[Crossref]
  • 8. Knoepfel, H., & Spong, D. A. (1979). Runaway electrons in toroidal discharges. Nucl. Fusion, 19, 785–830. DOI: 10.1088/0029-5515/19/6/008.[Crossref]
  • 9. Mitteau, R., Chappuis, Ph., Martin, G., & Rosanvallon, S. (2001). Analysis of in-service rupture of the inner first wall of Tore Supra. Fusion Eng. Des., 56/57, 445–449.[Crossref]
  • 10. Jaspers, R., Lopez Cardozo, N. J., Schueller, F. C., & et al. (1992). Observation of relativistic runaway electrons by synchrotron radiation in TEXTOR. Europhys. Conf. Abstracts, 16C, I:155–I:158.
  • 11. Sadowski, M. J., Jakubowski, L., & Szydlowski, A. (2004). Adaptation of selected diagnostic techniques to magnetic confinement fusion experiments. Czech. J. Phys., 54, C74–C80.[Crossref]
  • 12. Jakubowski, L., Stanisławski, J., Sadowski, M. J., Zebrowski, J., Weinzett, V., & Stockel, J. (2006) Design and tests of Cherenkov detector for measurements of fast electrons within CASTOR tokamak. Czech. J. Phys., 56, B98–B103.[Crossref]
  • 13. Jakubowski, L., Malinowski, K., Sadowski, M. J., Zebrowski, J., Plyusnin, V. V., Rabinski, M., Fernandes, H., Silva, C., Duarte, P., & Jakubowski, M. J. (2010). Study of electron beams within ISTTOK tokamak by means of a multi-channel Cherenkov detector; their correlation with hard X-ray. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 623, 686–689. DOI: 10.1016/j.nima.2008.03.061.[Crossref]
  • 14. Plyusnin, V. V., Jakubowski, L., Zebrowski, J., Duarte, P., Malinowski, K., Fernandes, H., Silva, C., Rabinski, M., & Sadowski, M. J. (2010). Characteristics of four channel Cherenkov-type detector for measurements of runway electrons in the ISTTOK tokamak. Rev. Sci. Instrum., 81, 10D304. DOI: 10.1063/1.3478658.[WoS][Crossref]
  • 15. Jakubowski, L., Sadowski, M. J., Zebrowski, J., Rabinski, M., Malinowski, K., Mirowski, R., Lotte, Ph., Gunn, J., Pascal, J. -Y., Colledani, G., Basiuk, V., Goniche, M., & Lipa, M. (2010). Cherenkov-type diamond detectors for measurements of fast electrons in the TORE SUPRA tokamak. Rev. Sci. Instrum., 81, 013504. DOI: 10.1063/1.3280221.[WoS][Crossref]
  • 16. Sadowski, M. J. (2011). Generation and diagnostics of fast electrons within tokamak plasmas. Nukleonika, 56(2), 85–98.
  • 17. Matthews, G. F. (1991). Ion diagnostics for the tokamak boundary. Vacuum, 42(12), 769–773. DOI: 10.1016/0042-207X(91)90176-J.[Crossref]
  • 18. Stockel, J., Adamek, J., Balan, P., Bilyk, O., Brotankova, J., Dejernac, R., Devynck, P., Duran, I., Gunn, J. P., Hron, M., Horacek, J., Ionita, C., Kocan, M., Martines, E., Panek, R., Peleman, P., Schrittwieser, R., Van Oost, G., & Zacek, F. (2006). Advanced probes for edge plasma diagnostics on the CASTOR tokamak. J. Phys.: Conf. Series, 63, 012001. DOI: 10.1088/1742-6596/63/1/012001.[Crossref]
  • 19. Zweben, S. J., Boivin, R., Darrow, D., Loesser, D., Medley, S. S., McSmith, M., Owens, D. K., & Ulrickson, M. (1992). Operating experiences with the TFTR escaping alpha-detectors. Rev. Sci. Instrum., 63(10), 4565–4567. DOI: 10.1063/1.1143669.[Crossref]
  • 20. Szydlowski, A., Malinowska, A., Sadowski, M. J., Jaskóła, M., Korman, A., Van Wassenhove, G., Bonheure, G., Schweer, B., and the TEXTOR Team, Gałkowski, A., & Małek, K. (2008). Measurements of fusion-reaction protons in TEXTOR tokamak plasma by means of solid-state nuclear track detectors of the CR-39/PM-355 type. Radiat. Meas., 43, S290–S294. DOI: 10.1016/j.radmeas.2008.03.061.[WoS][Crossref]
  • 21. Sadowski, M. J. (2012). Progress in high-temperature plasma research at NCBJ (former IPJ) in Poland. Problems of Atomic Science and Technology, Seria: Plasma Phys., 82(6), 238–242.
  • 22. Sadowski, M. J., Czaus, K., Kwiatkowski, R., Malinowski, K., Składnik-Sadowska, E., Żebrowski, J., Paduch, M., Scholz, M., Garkusha, I. E., & Makhlay, V. A. (2013). Passive corpuscular diagnostics of charged particles emission from high-temperature plasma experiments. Problems of Atomic Science and Technology, Seria: Plasma Phys., 83(1), 252–257.
  • 23. Kwiatkowski, R., Malinowski, K., & Sadowski, M. J. (2014) Computer simulation of charged fusion-product trajectories and detection efficiency expected for future experiments within the COMPASS tokamak. Phys. Scripta, T161, 014013. DOI: 10.1088/0031-8949/2014/T161/014013.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.