Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 60 | 2 | 355-360

Article title

Enhanced resonant second harmonic generation in plasma based on density transition


Title variants

Languages of publication



Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.










Physical description


1 - 6 - 2015
22 - 1 - 2015
22 - 6 - 2015
25 - 9 - 2014


  • Department of Physics, Lovely Professional University, G. T. Road, Phagwara – 144411, Punjab, India
  • Department of Physics, Lovely Professional University, G. T. Road, Phagwara – 144411, Punjab, India


  • 1. Sharma, J. K., & Parashar, J. (2003). Parametric instability of a lower hybrid wave in a dusty plasma. Indian J. Pure Appl. Phys., 41, 290–294.
  • 2. Sharma, J. K., Parashar, J., & Mehta, A. S. (2003). Relativistic stimulated Raman scattering in a plasma channel. Indian J. Pure Appl. Phys., 41, 73–76.
  • 3. Parasher, J., & Pandey, H. D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci., 20, 996–999. DOI: 10.1109/27.199564.[Crossref]
  • 4. Parashar, J., & Sharma, A. K. (1998). Second harmonic generation by an obliquely incident laser on a vacuum plasma interface. Europhys. Lett., 41, 389. DOI: 10.1209/epl/i1998-00162-1.[Crossref]
  • 5. Pramanik, T. K., & Bhattacharya, D. P. (1990). Harmonic generation in semiconductors in the presence of deep repulsive traps. Solid State Commun., 74, 539–542. DOI: 10.1016/0038-1098(90)90342-9.[Crossref]
  • 6. Malka, V., Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Danson, C., Neely, D., & Walsh. F. N. (1997). Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas. Plasma Phys., 4, 1127–1131. DOI: 10.1063/1.872201.[Crossref]
  • 7. Esarey, E., Ting, A., Sprangle, P., Umstadter, D., & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci., 21, 95–104. DOI: 10.1109/27.221107.[Crossref]
  • 8. Kant, N., Gupta, D. N., & Suk, H. (2011). Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition. Phys. Lett. A, 375, 35. DOI: 10.1016/j.physleta.2011.06.062.[WoS][Crossref]
  • 9. Tatarakis, M., Watts, I., Beg, F. N., Clark, E. L., Dangor, A. E., Gopal, A., Haines, M. G., Norreys, P. A., Wagner, U., Wei, M. S., Zepf, M., & Krushelnick, K. (2002). Laser technology-measuring huge magnetic fields. Nature, 415, 280–280. DOI: 10.1038/415280a.[Crossref]
  • 10. Kant, N., & Sharma, A. K. (2004). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D-Appl. Phys., 37, 2395. DOI: 10.1088/0022-3727/37/17/009.[Crossref]
  • 11. Petrov, E. Y., & Kudrin, A. V. (2010). Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium. Phys. Rev. Lett., 104, 190404-7. DOI: 10.1103/PhysRevLett.104.190404.[Crossref]
  • 12. Kant, N., & Sharma, A. K. (2004). Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma. J. Phys. D-Appl. Phys., 37, 998–1001. DOI: 10.1088/0022-3727/37/7/007.[Crossref]
  • 13. Osman, F., Castillo, R., & Hora, H. (1999). Relativistic and ponderomotive self-focusing at laser–plasma interaction. J. Plasma Phys., 61, 263–273. DOI: 10.1017/S0022377898007417.[Crossref]
  • 14. Hafizi, B., Ting, A., Sprangle, P., & Hubbard, R. F.. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E, 62, 4120. DOI: 10.1103/PhysRevE.62.4120.[Crossref]
  • 15. Hora, H., & Ghatak, A. K. (1985). New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A, 31, 3473. DOI: 10.1103/PhysRevA.31.3473.[PubMed][Crossref]
  • 16. Baton, S. D., Baldies, H. A., Jalinaud, T., & Labaune, C. (1993). Fine-scale spatial and temporal structures of second-harmonic emission from an underdense plasma. Europhys. Lett., 23, 191. DOI: 10.1209/0295-5075/23/3/006.[Crossref]
  • 17. Schifano, E., Baton, S. D., Biancalana, V., Giulietti, A., Giulietti, D., Labaune, C., & Renard, N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction conditions. Laser Part. Beams, 12, 435. DOI: 10.1017/S0263034600008296.[Crossref]
  • 18. Ganeev, R. A., Chakera, J. A., Raghuramaiah, M., Sharma, A. K., Naik, P. A., & Gupta, P. D. (2001). Experimental study of harmonic generation from solid surfaces irradiated by multipicosecond laser pulses. Phys. Rev. E, 63, 026402. DOI: 10.1103/PhysRevE.63.026402.[Crossref]
  • 19. Banerjee, S., Valenzuela, A. R., Shah, R. C., Maksimchuk, A., & Umstadter, D. (2002). High harmonic generation in relativistic laser–plasma interaction. Phys. Plasmas, 9, 2393. DOI: 10.1063/1.1470167.[Crossref]
  • 20. Lin, H., Chen, L., & Kieffer, J. C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E, 65, 036414. DOI: 10.1103/PhysRevE.65.036414.[Crossref]
  • 21. Mori, M., Takahashi, E., & Kondo, K. (2002). Image of second harmonic emission generated from ponderomotively excited plasma density gradient. Phys. Plasmas, 9, 2812. DOI: 10.1063/1.1481506.[Crossref]
  • 22. Kuo, C. C., Pai, C. H., Lin, M. W., Lee, K. H., Lin, J. Y., Wang, J., & Chen, S. Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett., 98, 033901. DOI: 10.1103/PhysRevLett.98.033901.[WoS][Crossref]
  • 23. Kant, N., Sarlach, S., & Singh, H. (2011). Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika, 56(2), 149–153.
  • 24. Gupta, D. N., Hur, M. S., & Suk, H. (2006). Energy exchange during stimulated Raman scattering of a relativistic laser in plasma. J. Appl. Phys., 100, 103101-5. DOI: 10.1063/1.2384808.[Crossref]
  • 25. Singh, A., & Walia, K. (2011). Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy, 30, 555–560. DOI: 10.1007/s10894-011-9426-z.[WoS][Crossref]
  • 26. Kant, N., Wani, M. A., & Kumar, A. (2012). Self-focusing of Hermite-Gaussian laser beams in plasma under plasma density ramp. Opt. Commun., 285, 4483–4487. DOI: 10.1063/1.4870080.[Crossref]
  • 27. Nanda, V., Kant, N., & Wani, M. A. (2013). Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas, 20, 113109-7. DOI: 10.1063/1.4870080.[WoS][Crossref]
  • 28. Nanda, V., & Kant, N. (2014). Enhanced relativistic self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition. Phys. Plasmas, 21, 042101-6. DOI: 10.1063/1.4870080.[Crossref][WoS]
  • 29. Nanda, V., & Kant, N. (2014). Strong self-focusing of a cosh-Gaussian Laser Beam in collisionless magnetoplasma under plasma density ramp. Phys. Plasmas, 21, 072111-8. DOI: 10.1063/1.4889862.[Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.