Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 2 | 361-366
Article title

Monte Carlo study of medium-energy electron penetration in aluminium and silver

Title variants
Languages of publication
Monte Carlo simulations are very useful for many physical processes. The transport of particles was simulated by Monte Carlo calculating the basic parameters such as probabilities of transmitted–reflected and angular-energy distributions after interaction with matter. Monte Carlo simulations of electron scattering based on the single scattering model were presented in the medium-energy region for aluminium and silver matters. Two basic equations are required the elastic scattering cross section and the energy loss. The Rutherford equation for the different screening parameters is investigated. This scattering model is accurate in the energy range from a few keV up to about 0.50 MeV. The reliability of the simulation method is analysed by comparing experimental data from transmission measurements.
Physical description
1 - 6 - 2015
15 - 7 - 2014
22 - 6 - 2015
26 - 1 - 2015
  • 1. Reimer, L. (2000). Scanning electron microscopy: Physics of image formation and microanalysis. Meas. Sci. Technol., 11, 1826. DOI: 10.1088/0957-0233/11/12/703.[Crossref]
  • 2. Spencer, L. V. (1955). Theory of electron penetration. Phys. Rev., 98(6), 1597–1615.[Crossref]
  • 3. Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J. Phys. D-Appl. Phys., 5, 43–58.[Crossref]
  • 4. Shimizu, R., Kataoka, Y., Ikuta, T., Koshikawat, T., & Hashimoto, H. (1976). A Monte Carlo approach to the direct simulation of electron penetration in solids. J. Phys. D-Appl. Phys., 9, 101–114.[Crossref]
  • 5. Adesida, I., Shimizu, R., & Everhart, T. E. (1980). A study of electron penetration in solids using a direct Monte Carlo approach. J. Appl. Phys., 51(11), 5962–5969.[Crossref]
  • 6. Dep, P., & Nundy, U. (1988) A study of the penetration of electrons in compounds by Monte Carlo calculations. J. Phys. D-Appl. Phys., 21, 763–767.
  • 7. Shimizu, R., & Ze-Jun, D. (1992). Monte Carlo modeling of electron-solid interactions. Rep. Prog. Phys., 55, 487–531.[Crossref]
  • 8. Ivin, V. V., Silakov, M. V., Babushkin, G. A., Lu, B., Mangat, P. J., Nordquist, K. J., & Resnick, D. J. (2003). Modeling and simulation issues in Monte Carlo calculation of electron interaction with solid targets. Microelectron. Eng., 69, 594–605.[Crossref]
  • 9. Ding, Z. J., Salma, K., Li, H. M., Zhang, Z. M., Tokesi, K., Varga, D., Toth, J., Goto, K., & Shimizu, R. (2006). Monte Carlo simulation study of electron interaction with solids and surfaces. Surf. Interface Anal., 38, 657–663.[Crossref]
  • 10. Dapor, M. (1992). Monte Carlo simulation of backscattered electrons and energy from thick targets and surface films. Phys. Rev. B, 46(2), 618–625.[Crossref]
  • 11. Joy, D. C. (1991). An introduction to Monte Carlo simulations. Scanning Microscopy, 5(2), 329–337.
  • 12. Molière, G. (1947). Theory of scattering of fast charged particles. I. Single scattering in a screened Coulomb field. Z. Naturforsch. A, 2, 133–145.
  • 13. Nigam, B. P., Sundaresan, M. K., & Wu, T. Y. (1959). Theory of multiple scattering second Born approximation and corrections to Moliere’s work. Phys. Rev., 115, 491–502.[Crossref]
  • 14. Joy, D. C. (1955). Monte Carlo modeling for electron microscopy and microanalysis. New York: Oxford University Press.
  • 15. Kyriakou, I., Emfietzoglou, D., Nojeh, A., & Moscovitch, M. (2013). Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models. J. Appl. Phys., 113, 084303-11.[WoS][Crossref]
  • 16. Mayol, R., & Salvat, F. (1997). Total and transport cross sections for elastic scattering of electrons by atoms. Atom. Data Nucl. Data Tables, 65, 55–154.[Crossref]
  • 17. Jablonski, A., Salvat, F., & Powell, C. J. (2010). NIST electron elastic-scattering cross-section database – Version 3.2. National Institute of Standards and Technology Standard Reference Data Program. Gaithersburg, MD: National Institute of Standards and Technology.
  • 18. Liljequist, D. (1983). A simple calculation of inelastic mean free path and stopping power for 50 eV-50 keV electrons in solids. J. Phys. D-Appl. Phys., 16, 1567–1582.[Crossref]
  • 19. Gryzinski, M. (1965). Two-particle collisions. I. General relations for collisions in the laboratory system, two-particle collisions. II. Coulomb collisions in the laboratory system of coordinates, classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev., 138, A305, A322, A336.
  • 20. Ozmutlu, E. N., & Aydin, A. (1994). Monte-Carlo calculations of 50 eV-I MeV positrons in aluminum. Appl. Radiat. Isot., 45, 963–971.[Crossref][WoS]
  • 21. Aydın, A. (2000). Monte Carlo calculations of positron implantation profiles in silver and gold. Radiat. Phys. Chem., 59, 277–280.[Crossref]
  • 22. Aydın, A. (2005). Monte Carlo calculations of low energy positrons in silicon. Nukleonika, 50(1), 37–42.
  • 23. Aydın, A. (2009). Monte Carlo calculations of electrons in aluminum. Appl. Radiat. Isot., 67, 281–286.[PubMed][Crossref][WoS]
  • 24. Powell, C. J., & Jablonski, A. (2010). NIST electron inelastic mean free path database. Version 1.2. Gaithersburg, MD: National Institute of Standards and Technology. (SRD 71).
  • 25. Penn, D. R. (1987). Electron mean free path calculations using a model dielectric function. Phys. Rev. B, 35, 482–486.[Crossref]
  • 26. Seliger, H. H. (1955). Transmission of positrons and electrons. Phys. Rev., 100(4), 1029–1037.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.