PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 1 | 155-160
Article title

Magnetic and structural properties of Sc(Fe1−xSix)2 Laves phases studied by Mössbauer spectroscopy and neutron diffraction

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the presented paper is to study an influence of replacement of Fe atoms by Si atoms in quasibinary Sc(Fe1−xSix)2 Laves phases on their structural and magnetic properties. Powder X-ray diffraction (XRD) and neutron diffraction (ND) measurements carried out at different temperatures from 4.3 K up to about 700 K revealed that samples were single phase with cubic C15 structure for Si concentration x from 0.05 to 0.20 and hexagonal C14 structure for higher concentration. The results of 57Fe Mössbauer measurements showed that the Sc(Fe1−xSix)2 compounds with x ≤ 0.30 are ferrimagnetic at 4.3 K. At temperature 80 K in the samples with x = 0.20 and 0.30, a magnetic cluster spin-glass state has been observed, as ferrimagnetic long-range order disappears. Such picture was supported by the results of ND measurements carried out at 8 K, which confirmed the lack of long-range order for x above 0.10 and an occurrence of hyperfine field distributions in the corresponding Mössbauer spectra. At room temperature, samples with x ≥ 0.20 became paramagnetic. A substitution of Si atoms for Fe ones leads to a decreasing of mean values of hyperfine magnetic fields in samples under investigation. From the neutron diffraction pattern analysis of Sc(Fe0.90Si0.10)2Fe magnetic moment was determined as to be equal to 1.5 μB at 8 K. Combining this result with a value of hyperfine magnetic field on 57Fe probes, the hyperfine coupling constant A in Sc(Fe0.90Cu0.10)2 phases is estimated at about 11.6 T/μB at 8 K.
Publisher
Journal
Year
Volume
60
Issue
1
Pages
155-160
Physical description
Dates
published
1 - 3 - 2015
online
12 - 3 - 2015
received
18 - 6 - 2014
accepted
5 - 11 - 2014
References
  • 1. Hilscher, G. (1982). Onset of magnetism in concentrated ternary alloys I. J. Magn. Magn. Mater., 25(3), 229–250. DOI: 10.1016/0304-8853(82)90071-3.[Crossref]
  • 2. Hilscher, G. (1982). Onset of magnetism in concentrated ternary alloys I. Laves phase compounds A(Fe1−xBx)2 (A=Y, Zr, U; B=Mn, Co and Al). J. Magn. Magn. Mater., 27(1), 1–31. DOI: 10.1016/0304-8853(82)90279-7.[Crossref]
  • 3. Al Alam, A. F., Matar, S. F., Ouaini, N., & Nakhl, M. (April 2008). Hydrogen insertion effects on the magnetic properties and chemical bonding within C14 Laves phases. Prog. Solid State Chem., 36(3), 192–212. DOI: 10.1016/j.progsolidstchem.2008.07.001.[Crossref]
  • 4. Pokatilov, V. S., Sadchikov, V. V., Sidokhin, E. F., & Utenkova, O. V. (1986). Structure and magnetic properties of Fe-Sc alloys. Fiz. Met. Metalloved., 62(1), 69–75.
  • 5. Gladyshevskii, E. I., Kotur, B. Y., Bodak, V. P., & Skvorchuk, V. P. (1977). Scandium-iron-silicon system. Dopov. Akad. Nauk Ukr. RSR, A, Fiz.-Tekh. Mat. Nauki (Ukrainian SSR), 39(8), 751–754.
  • 6. Niessen, A. K., & DeBoer, F. R. (1981) The enthalpy of formation of solid borides, carbides, nitrides, silicides, and phosphides of transition and noble metals. J. Less-Common Met., 82, 75–80. DOI: 10.1016/0022-5088(81)90200-9.[Crossref]
  • 7. Wiertel, M., Surowiec, Z., Beskrovnyi, A. I., Sarzyński, J., & Budzyński, M. (2005). Determination of magnetic moments and hyperfine fields in ScFe2 Laves phase compound. Annual Report Frank Laboratory of Neutron Physics. Dubna, Russian Federation: Joint Institute for Nuclear Research. Retrieved June 18, 2014 from: .
  • 8. Yamada, H. (1988). Electronic structure and magnetic properties of the cubic Laves phase transition metal compounds. Physica B+C, 149(1/3), 390–402. DOI: 10.1016/0378-4363(88)90270-7.[Crossref]
  • 9. Moriya, T. (1982). Spin fluctuations in ferromagnetic metals – temperature variation of local moment and short range order. J. Phys. Soc. Jpn., 51(2), 420–434. DOI: .[Crossref]
  • 10. Muraoka, Y., Shiga, M., & Nakamura, Y. (1979) Magnetic properties and Mössbauer effects of Zr(Fe1−xCox)2. J. Phys. F-Metal Phys., 9(9), 1889–1904. DOI: 10.1088/0305-4608/9/9/019.[Crossref]
  • 11. Reissner, R., Steiner, W. (1986). Electrostatic hyperfine interactions in Y(Fe1−xAlx)2. Hyperfine Interact., 28(1/4), 1017–1020. DOI: 10.1007/BF02061617.[Crossref]
  • 12. Sarzyński, J., Budzyński, M., Wasiewicz, R., & Wiertel, M. (1992). The influence of silicon on hyperfine magnetic fields in Zr(Fe1−xSix)2 measured for x ≤ 0.17. J. Phys.-Condens. Matter, 4(30), 6473–6478. DOI: 10.1088/0953-8984/4/30/014.
  • 13. Walker, L. R., Wertheim, G. K., & Jaccarino, V. (1961). Interpretation of the 57Fe isomer shift. Phys. Rev. Lett., 6(3), 98–101. DOI: .[Crossref]
  • 14. Kotur, B. Y., Gratz, E., Bauer, E., Hilscher, G., Kottar, A., Michor, H., Reichl, Ch., Wiesinger, G., & Markosyan, A. S. (1998). Magnetic and electrical properties of Sc(M1−xSix)2−y (M = Fe, Co, Ni). J. Alloy. Compd., 278(1/2), 49–59. DOI: 10.1016/S0925-8388(98)00642-2.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0032
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.