Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 1 | 133-136
Article title

Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass crystallization

Title variants
Languages of publication
60P2O5-40Fe2O3 glass was synthesized and 57Fe Mössbauer spectroscopy study was presented. The main goal of the research was to investigate structural changes of local environment of iron ions during gradual crystallization of the glass. It was observed that some changes were evidenced at temperature of heat treatment higher than 400°C, above which content of tetrahedrally coordinated Fe3+ was increased in cost of octahedral sites. This led to formation of areas of nucleation of α-FePO4. Crystallization of α-Fe3(P2O7)2 and Fe2P2O7 was also observed.
Physical description
1 - 3 - 2015
12 - 3 - 2015
18 - 6 - 2014
2 - 11 - 2014
  • 1. Wacławska, I., & Szumera, M. (2010). Thermal behaviour of Fe-doped silicate-phosphate glasses. J. Therm. Anal. Calorim., 101(2), 423–427. DOI: 10.1007/s10973-010-0798-5.[Crossref]
  • 2. Donald, W. (2007). Immobilisation of radioactive and non-radioactive wastes in glass-based systems: an overview. Glass Technol.: Eur. J. Glass Sci. Technol. Part A, 48(4), 155–163.
  • 3. Ojovan, M. I., & Lee, W. E. (2005). An introduction to nuclear waste immobilisation. Oxford, UK: Elsevier Science. DOI: 10.1016/B978-008044462-8.[Crossref]
  • 4. Stoch, P., Ciecinska, M., & Stoch, A. (2014). Thermal properties of phosphate glasses for salt waste immobilization. J. Therm. Anal. Calorim., 117(1), 177–204. DOI: 10.1007/s10973-014-3698-2.[WoS][Crossref]
  • 5. Wright, A. C., Sinclair, R. N., Shaw, J. L., Haworth, R., Marasinghe, G., Day, D. E., Bingham, P. A., Forder, S. D., Cuello, G. J., & Fischer, H. E. (2012). The atomic and magnetic structure and dynamics of iron phosphate glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 53(6), 227–244.
  • 6. Wivel, C., & Mørup, S. (1981). Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E-Sci. Instrum., 14(5), 605–610. DOI: 10.1088/0022-3735/14/5/018.[Crossref]
  • 7. Alberto, H. V., Pinto da Cunha, J. L., Mysen, B. O., Gil, J. M., & Ayres de Campos, N. (1996). Analysis of Mössbauer spectra of silicate glass using a two-dimensional Gaussian distribution of hyperfine parameters. J. Non-Cryst. Solids, 194(1), 48–57. DOI: 10.1016/0022-3093(95)00463-7.[Crossref]
  • 8. Stoch, P., Ciecinska, M., Zachariasz, P., Suwalski, J., Górski, L., & Wójcik, T. (2013). Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass. Nukleonika, 58(1), 63–66.
  • 9. Stoch, P., Szczerba, W., Bodnar, W., Ciecińska, M., Stoch, A., & Burkel, E. (2014). Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations. Phys. Chem. Chem. Phys., 16, 19917–19927. DOI: 10.1039/C4CP03113J.[Crossref]
  • 10. Millet, J. M., Verley, C., Forissier, M., Bussiere, P., & Verdine, J. C. (1989). Mössbauer spectroscopic study of iron phosphate catalysts used in selective oxidation. Hyperfine Interact., 46(1), 619–628. DOI: 10.1007/BF02398251.[Crossref]
  • 11. Khan, F. B., Bharuth-Ram, K., & Friedrich, H. B. (2010). Phase transformations of the FePO4 catalyst in the oxidative dehydrogenation to form an alkyl methacrylate. Hyperfine Interact., 197(1/3), 317–323. DOI 10.1007/s10751-010-0254-8.[Crossref]
  • 12. Ericsson, T., Nord, A. G., Ahmed, M. M. O., Gismelseed, A., & Khangi, F. (1990). Fe2P2O7 and Fe2P4O12 studied between 5–800 K. Hyperfine Interact., 57(1/4), 2179–2186. DOI: 10.1007/BF02405783.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.