Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 1 | 147-150

Article title

The role and position of iron in 0.8CaZrO3-0.2CaFe2O4

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of the study was to characterize the 0.8CaZrO3-0.2CaFe2O4 composite structure with particular emphasis on the role and position of iron in the function of sintering temperature. The paper presents the results of 57Fe Mössbauer effect at room temperature. It was found that the increase of sintering temperature causes an increase in the amount of incorporated iron ions in the CaZrO3-crystal structure. Based on Mössbauer spectroscopy analysis, it was found that three different environments of Fe3+ ions were observed in the obtained materials. Two of them corresponded to CaFe2O4 phase and one was associated with the substitution of Zr4+ by Fe3+ in the CaZrO3 structure.

Publisher

Journal

Year

Volume

60

Issue

1

Pages

147-150

Physical description

Dates

published
1 - 3 - 2015
online
12 - 3 - 2015
received
18 - 6 - 2014
accepted
2 - 11 - 2014

Contributors

  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
author
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630

References

  • 1. Dravid, V. P., Sung, C. M., Notis, M. R., & Lyman, C. E. (1989). Crystal symmetry and coherent twin structure of calcium zirconate. Acta Crystallogr. Sect. B-Struct. Sci., 45(3), 218–227. DOI: 10.1107/S0108768189000856.[Crossref]
  • 2. Rossa, N. L., & Chaplin, T. D. (2003). Compressibility of CaZrO3 perovskite: Comparison with Ca-oxide perovskites. J. Solid State Chem., 172(1), 123–126. DOI: 10.1016/S0022-4596(02)00166-4.[Crossref]
  • 3. Stoch, P., Szczerba, J., Lis, J., Madej, D., & Pędzich, Z. (2012). Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc., 32(3), 665–670. DOI: 10.1016/j.jeurceramsoc.2011.10.011.[Crossref]
  • 4. Prasanth, C. S., Padma Kumar, H., Pazhani, R., Solomon, S., & Thomas, J. K. (2008). Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. J. Alloy. Compd., 464(1/2), 306–309. DOI: 10.1016/j.jallcom.2007.09.098.[Crossref]
  • 5. Pollet, M., Marinel, S., & Desgardin, G. (2004). CaZrO3, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. J. Eur. Ceram. Soc., 24(1), 119–127. DOI: 10.1016/S0955-2219(03)00122-5.[Crossref]
  • 6. Levin, I., Amos, T. B., Bell, S. M., Farber, L., Vanderah, T. A., Roth, R. S., & Toby, B. H. (2003). Phase equlibra, crystal structures, and dielectric anomaly in the BaZrO3-CaZrO3 system. J. Solid State Chem., 175, 170–181. DOI: 10.1016/S0022-4596(03)00220-2.[Crossref]
  • 7. Serena, S., Sainz, M. A., & Caballero, A. (2009). The system Clinker-MgO-CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker. J. Eur. Ceram. Soc., 29(11), 2199–2209. DOI: 10.1016/j.jeurceramsoc.2009.01.015.[Crossref][WoS]
  • 8. Dudek, M., & Bućko, M. M. (2003). Electrical properties of stoichiometric and non-stoichiometric calcium zirconate. Solid State Ion., 157, 183–187.
  • 9. Dudek, M., & Drożdż-Cieśla, E. (2009). Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate. J. Alloy. Compd., 457, 846–854. DOI: 10.1016/j.jallcom.2008.08.020.[Crossref][WoS]
  • 10. Hwang, S. C., & Choi, G. M. (2006). The effect of cation nonstoichiometry on the electrical conductivity of acceptor-doped CaZrO3. Solid State Ion., 177, 3099–3103. DOI: 10.1016/j.ssi.2006.08.002.[Crossref]
  • 11. Smith, K. L., Colella, M., Cooper, R., & Vance, E. R. (2003). Measured displacement energies of oxygen ions in titanates and zirconates. J. Nucl. Mater., 321(1), 19–28. DOI: 10.1016/S0022-3115(03)00197-1.[Crossref]
  • 12. Muller-Buschbaum, H. K. (2003). The crystal chemistry of AM2O4 oxometallates. J. Alloy. Compd., 349(1/2), 49–104.
  • 13. Muller, O., & Roy, R. (1974). The major ternary structural families. New York: Springer.
  • 14. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst., 2, 65–71. DOI: 10.1107/S0021889869006558.[Crossref]
  • 15. Rodriguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder. Diffr. Phys. B, 192(1/2), 55–69. DOI: 10.1016/0921-4526(93)90108-I.[Crossref]
  • 16. Shannon, R. D. (1976). Revise effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751–767. DOI: 10.1107/S0567739476001551.[Crossref]
  • 17. Tsipis, E. V., Pivak, Y. V., Waerenborgh, J. C., Kolotygin, V. A., Viskup, A. P., & Khortan, V. V. (2007). Oxygen ionic conductivity, Mössbauer spectra and thermal expansion of CaFe2O4-δ. Solid State Ion., 178(25/26), 1428–1436. DOI: 10.1016/j.ssi.2007.09.003.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0027
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.