Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 1 | 69-73

Article title

Atomic short-range order in mechanically synthesized iron based Fe-Zn alloys studied by 57Fe Mössbauer spectroscopy

Content

Title variants

Languages of publication

EN

Abstracts

EN
Mechanical alloying method was applied to prepare nanocrystalline iron-based Fe1−xZnx solid solutions with x in the range 0.01 ≤ x ≤ 0.05. The structural properties of the materials were investigated with the Mössbauer spectroscopy by measuring the room temperature spectra of 57Fe for as-obtained and annealed samples. The spectra were analyzed in terms of parameters of their components related to unlike surroundings of the iron probes, determined by different numbers of zinc atoms existing in the neighborhood of iron atoms. The obtained results gave clear evidence that after annealing process, the distribution of impurity atoms in the first coordination spheres of 57Fe nuclei is not random and it cannot be described by binomial distribution. The estimated, positive values of the short-range order parameters suggest clustering tendencies of Zn atoms in the Fe-Zn alloys with low zinc concentration. The results were compared with corresponding data derived from Calphad calculation and resulting from the cellular atomic model of alloys by Miedema.

Publisher

Journal

Year

Volume

60

Issue

1

Pages

69-73

Physical description

Dates

published
1 - 3 - 2015
online
12 - 3 - 2015
received
18 - 6 - 2014
accepted
2 - 11 - 2014

Contributors

  • Institute of Experimental Physics, University of Wrocław, 9 M. Borna Sq., 50-204 Wrocław, Poland, Tel.: +48 71 375 9336, Fax: +48 71 328 7365
author
  • Institute of Experimental Physics, University of Wrocław, 9 M. Borna Sq., 50-204 Wrocław, Poland, Tel.: +48 71 375 9336, Fax: +48 71 328 7365

References

  • 1. Suryanarayana, C. (2001). Mechanical alloying and milling. Prog. Mater. Sci., 46, 1–184. DOI: 10.1016/S0079-6425(99)00010-9.[Crossref]
  • 2. Cowley, J. M. (1950). An approximate theory of order in alloys. Phys. Rev., 77, 669–675. DOI: 10.1103/PhysRev.77.669.[Crossref]
  • 3. Staunton, J. B., Ling, M. F., & Johnson, D. D. (1997). A theoretical treatment of atomic short-range order and magnetism in iron-rich b.c.c. alloys. J. Phys.-Condens. Matter, 9, 1281–1300. DOI: 10.1088/0953-8984/9/6/014.[Crossref]
  • 4. Erhart, P., Caro, A., Serrano de Caro, M., & Sadigh, B. (2008). Short-range order and precipitation in Fe-rich Fe-Cr alloys. Phys. Rev. B, 77, 134206–134214. DOI: .[Crossref]
  • 5. Bonny, G., Erhart, P., Caro, A., Pasianot, R. C., Malerba, L., & Caro, M. (2009). The influence of short range order on the thermodynamics of Fe-Cr alloy. Model. Simul. Mater. Sci. Eng., 17, 025006–025021. DOI: 10.1088/0965-0393/17/2/025006.[Crossref]
  • 6. Gorbatov, O. I., Kuznetsov, A. R., Gornostyrev, Yu. N., Ruban, A. V., Ershov, N. V., Lukshina, V. A., Chernenkov, Yu. P., & Fedorov, V. I. (2011). Role of magnetism in the formation of a short-range order in iron-silicon alloys. J. Exp. Theor. Phys., 112, 848–859. DOI: 10.1134/S1063776111040066.[Crossref][WoS]
  • 7. Mirebeau, I., & Parette, G. (2010). Neutron study of the short range order inversion in Fe1−xCrx. Phys. Rev. B, 82, 104203–104208. DOI: 10.1103/Phys-RevB.82.104203.[Crossref]
  • 8. Jartych, E. (2003). Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying. J. Magn. Magn. Mater., 265, 176–188. DOI: 10.1016/S0304-8853(03)00263-4.[Crossref]
  • 9. Dubiel, S. M., & Cieślak, J. (2013). Effect of thermal treatment on the short-range order in Fe-Cr alloys. Mater. Lett., 107, 86–89. DOI: 10.1016/j.matlet.2013.05.127.[Crossref]
  • 10. Idczak, R., Konieczny, R., & Chojcan, J. (2013). Short-range order in iron alloys studied by 57Fe Mössbauer spectroscopy. Solid State Commun., 159, 22–25. DOI: 10.1016/j.ssc.2013.01.015.[Crossref][WoS]
  • 11. Idczak, R., Konieczny, R., & Chojcan, J. (2012). Atomic short-range order in Fe1−xCrx alloys studied by 57Fe Mössbauer spectroscopy. J. Phys. Chem. Solids, 73, 1095–1098. DOI: 10.1016/j.jpcs.2012.05.010.[Crossref]
  • 12. Idczak, R., Konieczny, R., & Chojcan, J. (2012). An enthalpy of solution of chromium in iron studied with 57Fe Mössbauer spectroscopy. Physica B, 407, 2078–2081. DOI: 10.1016/j.physb.2012.02.009.[Crossref][WoS]
  • 13. Vincze, I., & Campbell, I. A. (1973). Mössbauer measurements in iron base alloys with transition metals. J. Phys. F, 3, 647–663. DOI: 10.1088/0305-4608/3/3/023.[Crossref]
  • 14. Błachowski, A., Ruebenbauer, K., Żukrowski, J., Przewoźnik, J., Marzec, J., & Rakowska, A. (2011). Spin- and charge density perturbations and short-range order in Fe-Cu and Fe-Zn BCC alloys: A Mössbauer study. J. Phys. Chem. Solids, 72, 1537–1542. DOI: 10.1016/j.jpcs.2011.08.032.[Crossref][WoS]
  • 15. Laggoun, A., Hauet, A., & Teillet, J. (1990). Mössbauer study of Zn effect on bcc iron in metastable Fe-Zn alloys. Hyperfine Interact., 54, 825–829. DOI: 10.1007/BF02396136.[Crossref]
  • 16. Błachowski, A., & Wdowik, U. D. (2012). Transition metal impurity effect on charge and spin density in iron: Ab initio calculations and comparison with Mössbauer data. J. Phys. Chem. Solids, 73, 317–323. DOI: 10.1016/j.jpcs.2011.10.017.[Crossref]
  • 17. Miedema, A. R. (1992). Energy effects and charge transfer in metal physics, modeling in real space. Physica B, 182, 1–17. DOI: 10.1016/0921-4526(92)90565-A.[Crossref]
  • 18. Xiong, W., Kong, Y., Du, Y., Liu, Z. K., Selleby, M., & Sun, W. (2009). Thermodynamic investigation of the galvanizing systems, I: Refinement of the thermodynamic description for the Fe-Zn system. Computer Coupling of Phase Diagrams and Thermochemistry, 33, 433–440. DOI: 10.1016/j.calphad.2009.01.002.[Crossref]
  • 19. Su, X., Tang, N., & Toguri, J. M. (2001). Thermodynamic evaluation of the Fe-Zn system. J. Alloy. Compd., 325, 129–136. DOI: 10.1016/S0925-8388(01)01273-7.[Crossref]
  • 20. Nakano, J., Malakhov, D. V., & Purdy, G. R. (2005). A crystallographically consistent optimization of the Zn-Fe system. Computer Coupling of Phase Diagrams and Thermochemistry, 29, 276–288. DOI: 10.1016/j.calphad.2005.08.005.[Crossref]
  • 21. Królas, K. (1981). Correlation between impurity binding energies and heat of formation of alloys. Phys. Lett. A, 85, 107–110. DOI: 10.1016/0375-9601(81)90235-8.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0017
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.