Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 1 | 19-22

Article title

Mobility of interacting inorganic nanoparticles

Content

Title variants

Languages of publication

EN

Abstracts

EN
The mobility of the 110 nm-Fe2O3 particles in a viscous sucrose solution depends on the concentration of the nanoparticles. When the average particle–particle nearest neighbor distance <r> is less than 250 nm, the particle interaction slows down their mobility. When <r> is more than 170 nm, the small mobility of nanoparticles does not depend on their concentration. The critical distance is approximately equal to 2Rh = 260 nm, where Rh is the hydrodynamic radius, determined by the dynamic light scattering (DLS) method.

Publisher

Journal

Year

Volume

60

Issue

1

Pages

19-22

Physical description

Dates

published
1 - 3 - 2015
accepted
12 - 10 - 2014
online
12 - 3 - 2015
received
18 - 6 - 2014

Contributors

  • M. Smoluchowski Institute of Physics, Jagiellonian University, 11 Prof. S. Łojasiewicza Str., 30-348 Kraków, Poland, Tel.: +48 12 664 4697, Fax: +48 12 664 4905
author
  • Institute of Physics, Technical University of Cracow, 1 Podchorążych Str., 30-084 Kraków, Poland
author
  • M. Smoluchowski Institute of Physics, Jagiellonian University, 11 Prof. S. Łojasiewicza Str., 30-348 Kraków, Poland, Tel.: +48 12 664 4697, Fax: +48 12 664 4905

References

  • 1. Szymanski, J., Patkowski, A., Gapinski, J., Wilk, A., & Holyst, R. (2006). Movement of proteins in an environment crowded by surfactant micelles: Anomalous versus normal diffusion. J. Phys. Chem. B, 110, 7367–7373. DOI: 10.1021/jp055626w.[Crossref]
  • 2. Fornal, P., & Stanek, J. (2008). Mobility of hematite submicron particles in water solutions of sugar. Acta Phys. Pol. A, 114, 1667–1673.
  • 3. Fornal, P., Stanek, J., & Wilk, A. (2008). Mobility of microparticles in protein gel. Hyperfine Interact., 185, 81–86. DOI: 10.1007/s10751-008-9815-5.[WoS][Crossref]
  • 4. Fornal, P., & Stanek, J. (2009). Mobility of inorganic nanoparticles in soft matter. Hyperfine Interact., 190, 75–85. DOI: 10.1007/978-3-642-01370-6_33.[Crossref]
  • 5. United States Department of Commerce. (1958). Viscosities of sucrose solutions at various temperatures: Table of recalculated values. Suppl. to National Bureau of Standards, 440. United States of America.
  • 6. Khismatullin, D. B., & Truskey, G. A. (2012). Leukocyte rolling on p-selectin: A three-dimensional numerical study of the effect of cytoplasmic viscosity. Biophys. J., 102(8), 1757–1766. DOI: 10.1016/j.bpj.2012.03.018.[WoS]
  • 7. Hertz, P. (1909). Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind. Math. Ann., 67(3), 387–398. DOI: 10.1007/BF01450410.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.