Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 2 | 331-338
Article title

Important problems of future thermonuclear reactors*

Title variants
Languages of publication
This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D) and tritium (T). There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI). There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He) for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO).
Physical description
1 - 6 - 2015
1 - 12 - 2014
22 - 6 - 2015
3 - 8 - 2014
  • 1. Ongena, J. (2014). How to shape our future energy supply. In Proceedings of 12th Kudowa Summer School “Towards Fusion Energy”, 9–13 June 2014, Kudowa Zdroj, Poland (p. IL-1). Warsaw: IPPLM. CD Issue.
  • 2. Culham Centre for Fusion Energy, .
  • 3. Conn, R. W., Chuyanov, V. A., Inoue, N., & Sweetman, D. R. (1992). The International Thermonuclear Experimental Reactor. Sci. Am., 266(4), 103–110. DOI: 10.1038/scientificamerican0492-102.[Crossref]
  • 4. Sadowski, M. J. (2005). Nuclear fusion – energy for future. Nukleonika, 50(Suppl. 3), S41–S52.
  • 5. Vandenplas, P. E. (1980). Reflections on the past and future of fusion and plasma physics research. Plasma Phys. Contr. Fusion, 40, 77–85.
  • 6. Rhodes, R. (1995). Dark Sun; The making of the hydrogen bomb. New York: Simon & Schuster.
  • 7. Sadowski, M. J., & Scholz, M. (2012). Important issues of high-current plasma experiments of the Z-pinch type. Nukleonika, 57(1), 11–24.
  • 8. Hurricane, O. A., Callahan, D. A., Casey, D. T., Celliers, P. M., Cerjan, C., Dewald, E. L., Dittrich, T. R., Döppner, T., Hinkel, D. E., Berzak Hopkins, L. F., Kline, J. L., Le Pape, S., Ma, T., MacPhee, A. G., Milovich, J. L., Pak, A., Park, H. -S., Patel, P. K., Remington, B. A., Salmonson, J. D., Springer, P. T., & Tomassini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343–348. DOI: 10.1038/nature13008.[Crossref][WoS]
  • 9. .
  • 10. .
  • 11. Todd, T. N. (2012). The engineering design of ITER. In Proceedings of 11th Kudowa Summer School “Towards Fusion Energy”, 11–15 June 2012, Kudowa Zdroj, Poland. (p. IL-6), Warsaw: IPPLM. CD Issue.
  • 12. Pinches, S. D. (2014). Physics challenges and status of ITER. In Proceedings of 12th Kudowa Summer School “Towards Fusion Energy”, 9–13 June 2014, Kudowa Zdroj, Poland. (p. IL-6). Warsaw: IPPLM. CD Issue.
  • 13. Garin, P., & Sugimoto, M. (2011). IFMIF’s new design; Status after 2 years of the EVEDA project. J. Nucl. Mater., 417(1/3), 1262–1266. DOI: 10.1016/j.jnucmat.2010.12.272.[Crossref][WoS]
  • 14. Todd, T. N. (2014). The technical challenges of DEMO. In Proceedings of 12th Kudowa Summer School “Towards Fusion Energy”, 9–13 June 2014, Kudowa Zdroj, Poland. (p. IL-15). Warsaw: IPPLM. CD Issue.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.