Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Lifshitz transitions and zero point lattice
fluctuations in sulfur hydride showing near room
temperature superconductivity

Content

Title variants

Languages of publication

EN

Abstracts

EN
Emerets’s experiments on pressurized sulfur hydride
have shown that H3S metal has the highest known
superconducting critical temperature Tc = 203 K. The
Emerets data show pressure induced changes of the isotope
coefficient between 0.25 and 0.5, in disagreement
with Eliashberg theory which predicts a nearly constant
isotope coefficient.We assign the pressure dependent isotope
coefficient to Lifshitz transitions induced by pressure
and zero point lattice fluctuations. It is known that pressure
could induce changes of the topology of the Fermi surface,
called Lifshitz transitions, but were neglected in previous
papers on the H3S superconductivity issue. Here we
propose thatH3S is a multi-gap superconductor with a first
condensate in the BCS regime (located in the large Fermi
surface with high Fermi energy) which coexists with second
condensates in the BCS-BEC crossover regime (located
on the Fermi surface spots with small Fermi energy) near
the and Mpoints.We discuss the Bianconi-Perali-Valletta
(BPV) superconductivity theory to understand superconductivity
in H3S since the BPV theory includes the corrections
of the chemical potential due to pairing and the configuration
interaction between different condensates, neglected
by the Eliashberg theory. These two terms in the
BPV theory give the shape resonance in superconducting
gaps, similar to Feshbach resonance in ultracold fermionic
gases, which is known to amplify the critical temperature.
Therefore this work provides some key tools useful in the
search for new room temperature superconductors.

Keywords

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

accepted
3 - 10 - 2015
online
6 - 11 - 2015
received
7 - 9 - 2015

Contributors

  • RICMASS, Rome
    International Center for Materials Science Superstripes, Via dei
    Sabelli 119A, 00185 Rome, Italy
    and Institute of Crystallography, Consiglio Nazionale delle Ricerche,
    via Salaria, 00015 Monterotondo, Italy
    and INSTM, Consorzio Interuniversitario Nazionale per la Scienza e
    Tecnologia dei Materiali, Rome Udr, Italy, E-mail:
    antonio.bianconi@ricmass.eu
  • DPMC, University of Geneva, 24 Quai Ernest-
    Ansermet, CH-1211 Geneva 4, Switzerland

References

  • ---
  • [1] A.P. Drozdov, M.I. Eremets, I.A. Troyan, Conventional superconductivityat 190 K at high pressures. Preprint arXiv:1412.0460,(1 December 2014)
  • [2] A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I.Shylin, Conventional superconductivity at 203 K at high pressures,Nature 525, 73-76 (2015)
  • [3] M.I. Eremets in "Superstripes 2015" A. Bianconi (ed.) ScienceSeries Vol. 6, p.286 (Superstripes Press, Rome, 2015)isbn:9788866830382.
  • [4] E. Cartlidge, Superconductivity record bolstered by magneticdata. Nature (29 June 2015) doi:10.1038/nature.2015.17870[Crossref]
  • [5] X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H.-F. Song, G.Yang, L. Zhang, Y. Ma, Tellurium hydrides at high pressures:high-temperature superconductors, preprint arXiv:1503.00396(march 2015)
  • [6] C. Chen, F. Tian, D. Duan, et al. Pressure induced phase transitionin MH2 (M = V, Nb), The Journal of Chemical Physics, 140,114703 (2014).
  • [7] P. Hou, X. Zhao, F. Tian, et al. High pressure structures and superconductivityof AlH3S (H2) predicted by first principles. RSCAdv. 5, 5096-5101 (2015).
  • [8] L. Paulatto, I. Errea, M. Calandra, F. Mauri First-principles calculationsof phonon frequencies, lifetimes and spectral functionsfrom weak to strong anharmonicity: the example of palladiumhydrides Phys. Rev. B, 91, 054304 (2015).[Crossref]
  • [9] Y. Liu, F. Tian, X. Jin, et al. Near-edge X-ray absorption fine structureof solid oxygen under high pressure: A density functionaltheory study. Solid State Communications, 147, 126-129 (2008).
  • [10] D. Duan, Y. Liu, F. Tian, et al., Pressure-induced metallizationof dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4,6968 (2014).
  • [11] A. O. Lyakhov, A. R. Oganov, H.T. Stokes, Q. Zhu, New developmentsin evolutionary structure prediction algorithm USPEX.Comput. Phys. Commun. 184, 1172 (2013).
  • [12] D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, T.Cui, Pressure-induced decomposition of solid hydrogen sulfide.Phys. Rev.B 91, 180502 (2015).[Crossref]
  • [13] J. A. Flores-Livas, A. Sanna, E.K.U. Gross, High temperature superconductivityin sulfur and selenium hydrides at high pressurepreprint arxiv:1501.06336v1 (26 Jan 2015)
  • [14] S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H.-F. Song, G.Yang, L. Zhang, Y. Ma, Phase Diagram and High-TemperatureSuperconductivity of Compressed Selenium Hydrides preprintarXiv:1502.02607 (9 Feb. 2015)
  • [15] D. Papaconstantopoulos, B.M. Klein, M.J. Mehl,W.E. Pickett, CubicH3S around 200 GPa: an atomic hydrogen superconductorstabilized by sulfur Phys. Rev. B 91, 184511 (2015).[Crossref]
  • [16] I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H.Liu, Y. Zhang, Y. Ma, F. Mauri, Hydrogen sulphide at high pressure:a strongly-anharmonic phonon-mediated superconductorPhys. Rev. Lett. 114, 157004 (2015).[Crossref]
  • [17] N. Bernstein, C.S. Hellberg, M.D. Johannes, I.I.Mazin, M.J. Mehl,What superconducts in sulfur hydrides under pressure, and whyPhys. Rev. B 91, 060511 (2015).[Crossref]
  • [18] A. P. Durajski, R. Szczesniak, Y. Li, Non-BCS thermodynamicproperties of H2S superconductor: Physica C: Superconductivityand its Applications 515, 1 (2015)
  • [19] R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, R. Arita Firstprinciplesstudy of the pressure and crystal-structure dependencesof the superconducting transition temperature in compressedsulfur hydrides. Phys. Rev. B, 91, 224513 (2015)[Crossref]
  • [20] J. E. Hirsch, F.Marsiglio Hole superconductivity in H2S and othersulfides under high pressure. Physica C: Superconductivity andits Applications 511, 45-49 (2015).
  • [21] N. W. Ashcroft, Metallic hydrogen: a high-temperature superconductor?Physical Review Letters 21, 1748 (1968)[Crossref]
  • [22] V. L. Ginzburg, D. A. Kirzhnitz, High temperature superconductivity.Consultants Bureau, Plenum Press, (New York, 1982).
  • [23] C. F. Richardson, N. W. Ashcroft High temperature superconductivityin metallic hydrogen: electron-electron enhancementsPhys. Rev. Lett. 78, 118 (1997)[Crossref]
  • [24] E. G.Maksimov, Savrasov, Lattice stability and superconductivityof the metallic hydrogen at high pressure. Solid State Communications119, 569 (2001)[Crossref]
  • [25] N. W. Ashcroft, Hydrogen Dominant Metallic Alloys: High TemperatureSuperconductors? Physical Review Letters 92, 187002(2004)[Crossref]
  • [26] N. W. Ashcroft, Symmetry and higher superconductivity in thelower elements. In Bianconi, A. (ed.) Symmetry and Heterogeneityin High Temperature Superconductors. vol. 214 of NATOScience Series II: Mathematics, Physics and Chemistry, 3-20(Springer Netherlands, 2006).
  • [27] E. Babaev, A. Sudbo, N. W. Ashcroft A superconductor to superfluidphase transition in liquid metallic hydrogen. Nature 431,666-668 (2004)
  • [28] E. G. Maksimov, O. V. Dolgov, A note on the possible mechanismsof high-temperature superconductivity. Physics-Uspekhi40, 933 (2007).[Crossref]
  • [29] K. Abe, N.W. Ashcroft Quantumdisproportionation: The high hydridesat elevated pressures. Phys. Rev. B, 88, 174110 (2013).[Crossref]
  • [30] J. Bardeen, L.N. Cooper, J.R. Schrieffer Theory of SuperconductivityPhys. Rev. 108, 1175 (1957)
  • [31] A. B. Migdal, Interaction between electrons and latticevibrations in a normal metal Soviet Physics JETP (Engl.Transl.);(United States) 34, 996 (1958)
  • [32] W. L. McMillan, Transition temperature of Strong-Coupled superconductors.Physical Review 167, 331-344 (1968).
  • [33] R. C. Dynes, McMillan’s equation and the Tc of superconductors.Solid State Communications 10, 615-618 (1972). URLhttp://dx.doi.org/10.1016/0038-1098(72)90603-5.[Crossref]
  • [34] G. M. Eliashberg, Interactions between electrons and latticevibrations in a superconductor. Sov. Phys.-JETP (Engl.Transl.);(United States) 11.3 (1960).
  • [35] Weinberg, S. Superconductivity for particular theorists.Progress of Theoretical Physics Supplement 86, 43-53 (1986).[Crossref]
  • [36] N.N. Bogoliubov. D. V. Shirkov, V.V. Tolmachev, A new methodin the superconductivity theory in Akad. Nauk. SSSR Moscow1958, Fortschr. Physik 6, 605 (1958)
  • [37] Y. Nambu, Axial Vector Current Conservation in Weak InteractionsPhys. Rev. Lett. 4, 380 (1960)[Crossref]
  • [38] L. P. Gor’kov, Developing BCS ideas in the former Soviet Union,Int. J. Mod. Phys. B, 24, 3835 (2010).
  • [39] B.D. Josephson, Possible new effects in superconductive tunnelling,Physics Letters 1, 251 (1962)[Crossref]
  • [40] J. Kondo Superconductivity in Transition Metals Prog. Theor.Phys. 29,1 (1963)[Crossref]
  • [41] J. M. Blatt Theory of Superconductivity, Academic Press, NewYork (1964)
  • [42] A. J. Leggett, in Modern Trends in the Theory of CondensedMatter,edited by by A. Pekalski and R. Przystawa, Lecture Notes inPhysics Vol. 115 (Springer-Verlag, Berlin, 1980), p. 13.
  • [43] James F. Annett Superconductivity, Superfluids and Condensates,(Oxford University Press, Oxford, 2004)
  • [44] B. V. Svistunov, E.S. Babaev, N. V. Prokof’ev Superfluid Statesof Matter CRC Press, 2015
  • [45] Coleman A.J., Yukalov V.I. Reduced Density Matrices (Springer,Berlin, 2000)
  • [46] Bianconi, A., Process of increasing the critical temperature Tc ofa bulk superconductor by making metal heterostructures at theatomic limit. US Patent 6,265,019 Jul. 2001 (priority date Dec 7,1993)
  • [47] A. Bianconi, On the Possibility of New High Tc Superconductorsby Producing Metal Heterostructures as in the Cuprate Perovskites.Solid State Communications 89, 933 (1994).[Crossref]
  • [48] A. Bianconi, On the Fermi liquid coupled with a generalizedWigner polaronic CDW giving high Tc superconductivity, SolidState Communications 91, 1 (1994).[Crossref]
  • [49] A. Bianconi, The instability close to the 2D generalized Wignerpolaron crystal density: A possible pairing mechanism indicatedby a key experiment, Physica C: Superconductivity 235-240, 269(1994).
  • [50] A. Bianconi, M. Missori, The instability of a 2D electron gas nearthe critical density for a Wigner polaron crystal giving the quantumstate of cuprate superconductors, Solid State Communications91, 287 (1994).[Crossref]
  • [51] A. Vittorini-Orgeas, A. Bianconi, From Majorana Theory ofAtomic Autoionization to Feshbach Resonances in High TemperatureSuperconductors Journal of Superconductivity and NovelMagnetism 22, 215 (2009)
  • [52] A. Perali, A. Bianconi, A. Lanzara, N.l. Saini The Gap Amplificationat the Shape Resonance in a superlattice of quantumstripes, Solid State Commun. 100, 181 (1996)
  • [53] A. Valletta, G. Bardelloni, M. Brunelli, A. Lanzara, A. Bianconi, N.L. Saini, Tc amplification and pseudogap at a shape resonancein a superlattice of quantum stripes, Journal of Superconductivity10, 383 (1997).[Crossref]
  • [54] A. Valletta, A. Bianconi, A. Perali, N. L. Saini, Electronic and superconductingproperties of a superlattice of quantumstripes atthe atomic limit. Zeitschrift fur Physik B CondensedMatter 104,707 (1997).[Crossref]
  • [55] A. Bianconi, A. Valletta, A. Perali, N.L. Saini, Superconductivityof a striped phase at the atomic limit, Physica C: Superconductivity296, 269 (1998).
  • [56] Antonio Bianconi, Shape resonances in multi-condensate granularsuperconductors formed by networks of nanoscale-stripedpuddles, J. Phys.: Conf. Ser. 449, 012002 (2013).
  • [57] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonancesin ultracold gases Reviews of Modern Physics 82, 1225(2010)[Crossref]
  • [58] M. Greiner, C. A. Regal, D. S. Jin, Emergence of a molecularBose Einstein condensate from a Fermi gas, Nature 426, 537-540(2003).
  • [59] A. Perali, P. Pieri, L. Pisani, G. C. Strinati, BCS-BEC crossoverover at Finite Temperature for Superfluid Trapped Fermi AtomsPhys. Rev. Lett. 92, 220404 (2004).[Crossref]
  • [60] Q. Chen, J. Stajic, S. Tan, K. Levin, BCS-BEC crossover: From hightemperature superconductors to ultracold superfluids. PhysicsReports 412, 1 (2005),
  • [61] A. Perali, P. Pieri, G.C. Strinati, Quantitative comparison betweentheoretical predictions and experimental results for theBCS-BEC crossover. Phys. Rev. Lett. 93, 100404 (2004).[Crossref]
  • [62] G. Campi et al. Inhomogeneity of charge density wave andquenched disorder in a high Tc superconductor. Nature 525,359?362 (2015).
  • [63] A. Bianconi, S. Agrestini, G. Bianconi, D. Di Castro, N.L. Saini, Aquantum phase transition driven by the electron lattice interactiongives high Tc superconductivity. Journal of alloys and compounds317, 537-541 (2001).
  • [64] G. Bianconi, Superconductor-insulator transition on annealedcomplex networks. Physical Review E 85, 061113 (2012)[Crossref]
  • [65] P. Turner L. Nottale, The origins of macroscopic quantum coherencein high temperature superconductivity Physica C: Superconductivityand its Applications 515,15 (2015)
  • [66] M. A. Continentino, I. T. Padilha, H. Caldas, Mechanism for enhancementof superconductivity inmulti-band systemswith oddparity hybridization. Journal of Statistical Mechanics: Theoryand Experiment 2014„ P07015 (2014).
  • [67] G. R. Stewart, Superconductivity in the A15 structure. Physica C:Superconductivity and its Applications 514, 28 (2015).
  • [68] J. Friedel, Phase transitions, electron-phonon couplings in perfectcrystals modulated structures. in "Electron-Phonon Interactionsand Phase Transitions" Springer Science & Business Media,NATO Advanced Study Institute (1977).
  • [69] J. Labbe’, J. Friedel Instabilite electronique et changement dephase cristalline des composes du type V3Si basse temparature.J. Phys. France 27, 153-165 (1966)[Crossref]
  • [70] T. Jarlborg , G. Arbman, The electronic structure of some A15compounds by semiself-consistent band calculations. J. Phys.F: Metal Phys. 7, 1635, (1977).
  • [71] B. M. Klein, L. L. Boyer, D. A. Papaconstantopoulos, Superconductingproperties of A15 compounds derived from Band-Structure results. Physical Review Letters 42, 530-533 (1979).[Crossref]
  • [72] T. Jarlborg, A. Junod , M. Peter, Electronic structure, superconductivity,and spin fluctuations in the A15 compounds A3B, B:A=V, Nb; B=Ir,Pt,Au. Phys. Rev. B27, 1558 (1983).[Crossref]
  • [73] W. L. McMillan, Superconductivity, and martensitic transformationsin A-15 compounds. in Electron-Phonon Interactions andPhase Transitions, Springer Science & Business Media, NATOAdvanced Study Institute (1977).
  • [74] L. R. Testardi, Structural phase transitions, supercobductivityin A15 compounds. in "Electron-Phonon Interactions and PhaseTransitions" Springer Science & Business Media, NATO AdvancedStudy Institute (1977).
  • [75] L. R. Testardi, Structural instability and superconductivity in A-15 compounds. Reviews of Modern Physics 47, 637 (1975)[Crossref]
  • [76] M. Takeda, H. Yoshida, H. Endoh, , H. Hashimoto, High resolutionelectron microscope observations of microstructures in a15type Nb3X superconductors. Journal of Microscopy 151, 147-157(1988).
  • [77] M. Arita, H. U. Nissen, Y. Kitano,W. Schauer, Electron Microscopyof Planar Defects in A15 Nb3Ge. Journal of Solid State Chemistry107, 76 (1993)
  • [78] N. L. Saini, M. Filippi, Z. Wu, H. Oyanagi, H. Ihara, A. Iyo, S.Agrestini,A. Bianconi, A study of the Nb3Ge system by Ge Kedgeextended x-ray absorption fine structure and x-ray absorptionnear-edge structure spectroscopy. Journal of Physics: CondensedMatter 14, 13543 (2002)[Crossref]
  • [79] A. Bianconi, D. Di Castro, S. Agrestini, G. Campi, N. L. Saini, A.Saccone, S. De Negri, M. Giovannini. A superconductormade bya metal heterostructure at the atomic limit tuned at the ‘shaperesonance’: MgB2 Journal of Physics: Condensed Matter 13,7383 (2001).[Crossref]
  • [80] A. Bussmann-Holder, A. Bianconi, Raising the diboride superconductortransition temperature using quantum interferenceeffects. Physical Review B 67, 132509.( 2003),[Crossref]
  • [81] H. Suhl, B. T. Matthias, L. R. Walker, Bardeen-Cooper-SchriefferTheory of Superconductivity in the Case of Overlapping Bands.Physical Review Letters 3, 552 (1959).[Crossref]
  • [82] G. A. Ummarino, R. S. Gonnelli, S. Massidda, A. Bianconi,Two-band Eliashberg equations and the experimental Tc of thediboride Mg1−xAlxB2. Physica C: Superconductivity 407, 121(2004).
  • [83] H. J. Choi, M. L. Cohen, S. G. Louie, Anisotropic Eliashberg theoryand the two-band model for the superconducting propertiesof MgB2. Physical Review B 73, 104520 (2006). .[Crossref]
  • [84] T. Yildirim, O. Gülseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q.Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, et al.,Giant Anharmonicity and Nonlinear Electron-Phonon Couplingin MgB2: A Combined First-Principles Calculation and NeutronScattering Study. Physical Review Letters 87 037001 (2001).[Crossref]
  • [85] L. Boeri, E. Cappelluti, L. Pietronero, Small Fermi energy, zeropointfluctuations, and nonadiabaticity in MgB2. Physical ReviewB 71, 012501 (2005).[Crossref]
  • [86] G. Campi, E. Cappelluti, T. Proffen, X. Qiu, E. S. Bozin, Billinge, S.Agrestini, N. L. Saini, A. Bianconi, Study of temperature dependentatomic correlations in MgB2. The European Physical JournalB - Condensed Matter and Complex Systems, 52, 15 (2006).[Crossref]
  • [87] L. Simonelli, V. Palmisano, M. Fratini, M. Filippi, P. Parisiades, D.Lampakis, E. Liarokapis, A. Bianconi, Isotope effect on the E2gphonon and mesoscopic phase separation near the electronictopological transition in Mg1−xAlxB2. Phys. Rev. B 80, 014520(2009).[Crossref]
  • [88] D. Innocenti, N. Poccia, A. Ricci, A. Valletta, S. Caprara, A.Perali, A. Bianconi, Resonant and crossover phenomena in amultiband superconductor: Tuning the chemical potential neara band edge. Phys. Rev. B 82, 184528 (2010).[Crossref]
  • [89] I. M. Lifshitz, Anomalies of electron characteristics of a metal inthe high pressure region. Sov. Phys. JETP 11, 1130 (1960).
  • [90] A. Varlamov, V. Edorov, A. Pantsulaya, Kinetic properties of metalsnear electronic topological transitions (2 1/2 order transitions)Advances in Physics 38, 469 (1989).[Crossref]
  • [91] K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, Nicola Poccia,Antonio Bianconi Model for phase separation controlled by dopingand the internal chemical pressure in different cuprate superconductors.Phys. Rev. B 78, 165124 (2008)[Crossref]
  • [92] A. Bianconi, N. Poccia, A. O. Sboychakov, A. L. Rakhmanov, K.I. Kugel, Intrinsic arrested nanoscale phase separation near atopological Lifshitz transition in strongly correlated two-bandmetals. Supercond. Sci. Technol. 28, 024005 (2015).[Crossref]
  • [93] A. Guidini, A. Perali, Band-edge BCS-BEC crossover in a twobandsuperconductor: physical properties and detection parameters.Supercond. Sci. Technol. 27, 124002 (2014).[Crossref]
  • [94] A. Bianconi, Feshbach shape resonance in multiband superconductivityin heterostructures. Journal of Superconductivity 18,625 (2005).[Crossref]
  • [95] A. Perali, D. Innocenti, A. Valletta, A. Bianconi, Anomalous isotopeeffect near a 2.5 lifshitz transition in a multi-band multicondensatesuperconductor Superconductor Science and Technology25, 124002 (2012).
  • [96] D. Innocenti, A. Bianconi, Isotope Effect at the Fano Resonancein Superconducting Gaps for Multiband Superconductors at a2.5 Lifshitz Transition. J Supercond Nov Magn 26, 1319 (2013).[Crossref]
  • [97] R. Caivano, et al. Feshbach resonance and mesoscopic phaseseparation near a quantum critical point in multiband FeAsbasedsuperconductors, Superconductor Science and Technology22, 014004 (2009).
  • [98] D. Innocenti, A. Valletta, A. Bianconi, Shape Resonance at aLifshitz Transition for High Temperature Superconductivity inMultiband Superconductor, Journal of Superconductivity andNovel Magnetism 24, 1137 (2011).
  • [99] A. Bianconi, Quantum Materials: Shape Resonances in Superstripes.Nature Physics 9, 536 (2013).[Crossref]
  • [100] A. A. Kordyuk, et al. Electronic band structure of ferro-pnictidesuperconductors from ARPES experiment. Journal of Superconductivityand Novel Magnetism 26, 2837 (2013)
  • [101] A. A. Kordyuk, Pseudogap from ARPES experiment: Three gapsin cuprates and topological superconductivity. LowTemperaturePhysics 41, 319-341 (2015).
  • [102] C. Liu, et al., Importance of the Fermi-surface topology to thesuperconducting state. of the electron-doped pnictide Ba(Fe1-xCox)2As2 Physical Review B 84, 020509 (2011)
  • [103] S. Ideta, T. Yoshida, I. Nishi, A. Fujimori, Y. Kotani, K. Ono,Y. Nakashima, S. Yamaichi, T. Sasagawa, M. Nakajima, K. Kihou,Y. Tomioka, C. H. Lee, A. Iyo, H. Eisaki, T. Ito, S. Uchida,R. Arita, Dependence of Carrier Doping on the Impurity Potentialin Transition-Metal-Substituted FeAs-Based Superconductors,Phys. Rev. Lett. 110, 107007 (2013)[Crossref]
  • [104] S. V. Borisenko et al. Direct observation of spin-orbitcoupling in iron-based superconductors. preprint (2014)arXiv:1409.8669
  • [105] Khandker Quader, Michael Widom Lifshitz Transitions in 122-Pnictides Under Pressure preprint (2014) arXiv:1401.7349
  • [106] A. Charnukha et al. Interaction-induced singular Fermi surfacein a high-temperature oxypnictide. superconductor. ScientificReports 5, 10392 (2015)
  • [107] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson,P. C. Canfield Boron Isotope Effect in SuperconductingMgB2, Phys. Rev. Lett., 86, 1877 (2001).
  • [108] T. Jarlborg, A. Bianconi, Breakdown of the Migdal approximationat Lifshitz transitions with giant zero-point motion in H3Ssuperconductor preprint arXiv:1509.07451 (2015)
  • [109] O.K. Andersen, Linear methods in band theory, Phys. Rev. B12,3060 (1975).[Crossref]
  • [110] B. Barbiellini, S.B. Dugdale T. Jarlborg, The EPMD-LMTO programfor electron positron momentum density calculations insolids, Comput. Mater. Sci. 28, 287 (2003).[Crossref]
  • [111] O. Gunnarsson, B.I. Lundquist, Exchange and correlation inatoms, molecules, and solids by the spin-density-functional formalism,Phys. Rev. B 13, 4274 (1976).[Crossref]
  • [112] T. Jarlborg, A.A. Manuel, M. Peter, Experimental and theoreticaldetermination of the Fermi surface of V3Si, Phys. Rev. B27,4210, (1983).[Crossref]
  • [113] T. Jarlborg, E.G. Moroni, G. Grimvall, 𝛾 transition in Ce fromtemperature-dependent band-structure calculations, Phys. Rev.B 55, 1288, (1997).[Crossref]
  • [114] E.G. Moroni, G. Grimvall, T. Jarlborg, Free Energy Contributionsto the hcp-bcc Transformation in Transition Metals, Phys. Rev.Lett. 76, 2758, (1996).[Crossref]
  • [115] T. Jarlborg, A. Bianconi, Fermi surface reconstruction of superoxygenatedLa2CuO3superconductors with ordered oxygen interstitials,Phys. Rev. B 87, 054514, (2013).[Crossref]
  • [116] D. Pettifor, Theory of energy bands and related properties of4d-transition metals. II. The electron-phonon matrix element,superconductivity and ion core enhancement, J. Phys. F: MetalPhys. 7, 1009, (1977).
  • [117] G.D. Gaspari, B.L. Gyorffy, Electron-Phonon Interactions, d Resonances,and Superconductivity in Transition Metals, Phys. Rev.Lett. 28, 801, (1972).[Crossref]
  • [118] M. Dacorogna, T. Jarlborg, A. Junod, M. Pelizzone, M. Peter,Electronic structure and low-temperature properties of V(x)Nb(1-x)N alloys J. Low Temp. Phys. 57, 629, (1984).
  • [119] T. Jarlborg, Electronic structure and properties of pure anddoped -FeSi from ab initio local-density theory, Phys. Rev. B59,15002, (1999).[Crossref]
  • [120] T. Jarlborg, P. Chudzinski, T. Giamarchi, Effects of thermaland spin fluctuations on the band structure of purple bronzeLi2Mo12O34 Phys. Rev. B85, 235108, (2012).
  • [121] T. Jarlborg, Role of thermal disorder for magnetism and the -𝛾 transition in cerium: Results from density-functional theory,Phys. Rev. B89, 184426 (2014).[Crossref]
  • [122] T. Jarlborg, Electronic structure and properties of superconductingmaterials with simple Fermi surfaces J. of Supercond.and Novel Magn., 28, 1231 (2014)
  • [123] G. Grimvall, Thermophysical properties of materials. (North-Holland, Amsterdam, 1986).
  • [124] T. Jarlborg, A model of the T-dependent pseudogap and its competitionwith superconductivity in copper oxides, Solid StateCommun. 151, 639, (2011).
  • [125] A. Perali, C. Castellani, C. Di Castro, M. Grilli, E. Piegari, and A.A. Varlamov, Two-gap model for underdoped cuprate superconductors,Physical Review B Rapid Commun. 62, 9295 (2000).[Crossref]
  • [126] A. Perali, M. Sindel, G. Kotliar Multi-patch model for transportproperties of cuprate superconductors, European Physical JournalB 24, 487 (2001).[Crossref]
  • [127] Quan Y., Pickett W.E., van Hove singularities and spectralsmearing in high temperature superconducting H3S preprintarXiv:1508.04491 (2015)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nsm-2015-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.