Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Integrated plasmonic double bowtie / ring grating
structure for enhanced electric field confinement

Content

Title variants

Languages of publication

EN

Abstracts

EN
Metallic nanoparticles and nanoantennas have
been extensively studied due to their capability to increase
electromagnetic field confinement which is essential in
numerous applications ranging from optoelectronics
to telecommunication and sensing devices. We show
that a double bowtie nanoantenna has a higher electric
field confinement in its gap compared to a single bowtie
nanoantenna, which is expected to give better fluorescence
enhancement of a single emitter placed in the gap. We show
that the electric field intensity can be further increased by
placing the double bowtie inside a ring grating structure
where the excitation of surface plasmon-polaritons (SPPs)
is achieved. We perform FDTD simulations to characterise
the double bowtie nanoantenna and study the effect of
its dimensions on the electric field enhancement in the
gap. Our proposed integrated structure with gratings is
shown to increase the electric field by a factor of 77 due
to a double cavity effect. Next steps would be to study the
fluorescence enhancement of emitters placed inside our
double bowtie / ring grating nanocavity to see if the strong
coupling regime can be attained.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

accepted
20 - 5 - 2015
received
22 - 6 - 2014
online
28 - 8 - 2015

Contributors

author
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
author
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
author
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
author
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
author
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes

References

  • [1] Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.;Moerner, W. E. Nat. Photonics 2009, 3 (11), 654–657.[Crossref]
  • [2] Farahani, J. N.; Pohl, D. W.; Eisler, H.-J.; Hecht, B. Phys. Rev.Lett. 2005, 95 (1), 017402.[Crossref]
  • [3] Aouani, H.; Rahmani, M.; Navarro-Cía, M.; Maier, S. A. Nat.Nanotechnol. 2014, 9 (4), 290–294.[Crossref]
  • [4] Biagioni, P.; Huang, J.; Duò, L.; Finazzi, M.; Hecht, B. Phys. Rev.Lett. 2009, 102 (25), 256801.[Crossref]
  • [5] Gao, Z.; Shen, L.; Li, E.; Xu, L.; Wang, Z. J. Light. Technol. 2012,30 (6), 829–833.[Crossref]
  • [6] Kumar V., D.; Bhardwaj, A.; Mishra, D. Micro Nano Lett. 2011, 6(2), 94.[Crossref]
  • [7] Di Martino, G.; Sonnefraud, Y.; Kéna-Cohen, S.; Tame, M.;Özdemir, Ş. K.; Kim, M. S.; Maier, S. A. Nano Lett. 2012, 12 (5),2504–2508.[Crossref]
  • [8] Steele, J. M.; Liu, Z.; Wang, Y.; Zhang, X. Opt. Express 2006, 14(12), 5664–5670.[Crossref]
  • [9] Wang, D.; Yang, T.; Crozier, K. B. Opt. Express 2011, 19 (3),2148–2157.[Crossref]
  • [10] Kinzel, E. C.; Srisungsitthisunti, P.; Li, Y.; Raman, A.; Xu, X.Appl. Phys. Lett. 2010, 96 (21), 211116.[Crossref]
  • [11] Chang, D.; Sørensen, A.; Hemmer, P.; Lukin, M. Phys. Rev. B2007, 76 (3), 035420.[Crossref]
  • [12] Törmä, P.; Barnes, W. L. ArXiv Prepr. ArXiv14051661 2014.
  • [13] Bellessa, J.; Bonnand, C.; Plenet, J.; Mugnier, J. Phys. Rev. Lett.2004, 93 (3).[Crossref]
  • [14] Stokes, J. L.; Yu, Y.; Yuan, Z. H.; Pugh, J. R.; Lopez-Garcia, M.;Ahmad, N.; Cryan, M. J. J. Opt. Soc. Am. B 2014, 31 (2), 302.[Crossref]
  • [15] Hatab, N. A.; Hsueh, C.-H.; Gaddis, A. L.; Retterer, S. T.; Li, J.-H.;Eres, G.; Zhang, Z.; Gu, B. Nano Lett. 2010, 10 (12), 4952–4955.[Crossref]
  • [16] Jiunn-Woei Liaw. IEEE J. Sel. Top. Quantum Electron. 2008, 14(6), 1441–1447.[Crossref]
  • [17] Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S.; Xiong, Q.J. Phys. Chem. Lett. 2013, 4 (3), 496–501.[Crossref]
  • [18] Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C.Nano Lett. 2011, 11 (3), 1009–1013.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nansp-2015-0005
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.