Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Fluorescence imaging of hybrid nanostructures
composed of natural photosynthetic complexes
and reduced graphene oxide

Content

Title variants

Languages of publication

EN

Abstracts

EN
Herein, we describe the results of fluorescence
microscopy imaging of peridinin-chlorophyll-protein
(PCP) photosynthetic complex mixed with reduced
graphene oxide (rGO). Upon incorporation of rGO the
fluorescence image of PCP changes substantially from
one characterized by uniform intensity towards a more
complex pattern. The isolated bright spots feature up
to ten times higher emission intensity compared to the
fluorescence of PCP in the reference sample, where no
rGO was added. The number of the bright spots increases
with increasing rGO concentration. At the same time the
fluorescence intensity away from the bright spots in the
PCP/rGO hybrid system is quenched in comparison to the
PCP – only reference.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

received
20 - 6 - 2014
online
24 - 3 - 2015
accepted
7 - 12 - 2014

Contributors

author
  • Institute of Physics,
    Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus
    University, Grudziadzka 5, 87-100 Toruń, Poland
author
  • Institute of Physics,
    Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus
    University, Grudziadzka 5, 87-100 Toruń, Poland
author
  • Institute of Physics,
    Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus
    University, Grudziadzka 5, 87-100 Toruń, Poland
  • Institute of Physical Chemistry Polish Academy
    of Sciences, 01-224 Warsaw, Poland
author
  • CInstitute of Physics, Faculty
    of Physics, Astronomy and Informatics, Nicolaus Copernicus University,
    Grudziadzka 5, 87-100 Toruń, Poland

References

  • [1] Lakowicz, J. R. Quenching of Fluorescence. In Principles ofFluorescence Spectroscopy; 2006; pp. 277–330.
  • [2] Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement andQuenching of Single-Molecule Fluorescence. Phys. Rev. Lett.2006, 96, 113002–1 – 113002–113004.
  • [3] Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.;Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D.N.; Möller, M.; Gittins, D. I. Fluorescence Quenching of DyeMolecules near Gold Nanoparticles: Radiative and NonradiativeEffects. Phys. Rev. Lett. 2002, 89, 203002–1 – 203002–203004.
  • [4] Huang, S. T.; Shi, Y.; Li, N. B.; Luo, H. Q. Fast and SensitiveDye-Sensor Based on Fluorescein/reduced Graphene OxideComplex. Analyst 2012, 137, 2593–2599.
  • [5] Lee, M. Y.; Kim, S. Y.; Kim, H. G.; In, I. ChemiluminescenceQuenching of Luminol-Functionalized Chemically ReducedGraphene Oxide through Noncovalent Interaction. Chem. Lett.2013, 42, 48–49.[WoS]
  • [6] Kim, M.-G.; Shon, Y.; Lee, J.; Byun, Y.; Choi, B.-S.; Kim, Y. B.; Oh,Y.-K. Double Stranded Aptamer-Anchored Reduced GrapheneOxide as Target-Specific Nano Detector. Biomaterials 2014, 35,2999–3004.[WoS]
  • [7] Samal, M.; Mohapatra, P.; Subbiah, R.; Lee, C.-L.; Anass,B.; Kim, J. A.; Kim, T.; Yi, D. K. InP/ZnS-Graphene Oxide andReduced Graphene Oxide Nanocomposites as FascinatingMaterials for Potential Optoelectronic Applications. Nanoscale2013, 5, 9793–9805.[Crossref][WoS]
  • [8] Novoselov, K. S.; Geim, A.; Morozov, S. V.; Jiang, D.; Zhang, Y.;Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effectin Atomically Thin Carbon Films. Science 2004, 306, 666–669.
  • [9] Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich,V. V; Morozov, S. V; Geim, a K. Two-Dimensional AtomicCrystals. PNAS 2005, 102, 10451–10453.[Crossref]
  • [10] De Miguel, M.; Alvaro, M.; García, H. Graphene as a Quencherof Electronic Excited States of Photochemical Probes. Langmuir2012, 28, 2849–2857.[Crossref][WoS]
  • [11] Guo, X. T.; Hua Ni, Z.; Yan Liao, C.; Yan Nan, H.; Zhang, Y.;Wei Zhao, W.; Hui Wang, W. Fluorescence Quenching of CdSeQuantum Dots on Graphene. Appl. Phys. Lett. 2013, 103,201909–1 – 201909–4.[Crossref]
  • [12] Koppens, F. H. L.; Chang, D. E.; García de Abajo, F. J. GraphenePlasmonics: A Platform for Strong Light-Matter Interactions.Nano Lett. 2011, 11, 3370–3377.[Crossref][WoS]
  • [13] Gaudreau, L.; Tielrooij, K. J.; Prawiroatmodjo, G. E. D. K.;Osmond, J.; García de Abajo, F. J.; Koppens, F. H. L. UniversalDistance-Scaling of Nonradiative Energy Transfer to Graphene.Nano Lett. 2013, 13, 2030–2035.[Crossref][WoS]
  • [14] Grigorenko, A. N.; Polini, M.; Novoselov, K. S. GraphenePlasmonics. Nat. Photonics 2012, 6, 749–758.[WoS][Crossref]
  • [15] Bao, Q.; Loh, K. P. Graphene Photonics, Plasmonics, andBroadband Optoelectronic Devices. ACS Nano 2012, 6,3677–3694.[WoS][Crossref]
  • [16] Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide asa Chemically Tunable Platform for Optical Applications. Nat.Chem. 2010, 2, 1015–1024.[Crossref][WoS]
  • [17] Kim, J.; Cote, L. J.; Kim, F.; Huang, J. Visualizing GrapheneBased Sheets by Fluorescence Quenching Microscopy. J. Am.Chem. Soc. 2010, 132, 260–267.[WoS]
  • [18] Treossi, E.; Melucci, M.; Liscio, A.; Gazzano, M.; Samorì, P.;Palermo, V. High-Contrast Visualization of Graphene Oxideon Dye-Sensitized Glass, Quartz, and Silicon by FluorescenceQuenching. J. Am. Chem. Soc. 2009, 131, 15576–15577.[WoS]
  • [19] Wang, Y.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J.Fluorescence Quenching in Conjugated Polymers Blendedwith Reduced Graphitic Oxide. J. Phys. Chem. C 2010, 114,4153–4159.
  • [20] Hill, C. M.; Zhy, Y.; Pan, S. Fluorescence and ElectroluminescenceQuenching Evidence of Interfacial Charge Transfer inPoly(3-Hexylthiophene): Graphene Oxide Bulk HeterojunctionPhotovoltaic Devices. ACS Nano 2011, 5, 942–951.[Crossref][WoS]
  • [21] Ran, C.; Wang, M.; Gao, W.; Ding, J.; Shi, Y.; Song, X.;Chen, H.; Ren, Z. Study on Photoluminescence Quenchingand Photostability Enhancement of MEH-PPV by ReducedGraphene Oxide. J. Phys. Chem. C 2012, 116, 23053–23060.[WoS]
  • [22] Iliut, M.; Gabudean, A.-M.; Leordean, C.; Simon, T.; Teodorescu,C.-M.; Astilean, S. Riboflavin Enhanced Fluorescence ofHighly Reduced Graphene Oxide. Chem. Phys. Lett. 2013, 586,127–131.
  • [23] Zhang, X.-F.; Li, F. Interaction of Graphene with Excited andGround State Rhodamine Revealed by Steady State and Time Resolved Fluorescence. J. Photochem. Photobiol. A Chem. 2012,246, 8–15.[WoS]
  • [24] Wörmke, S.; Mackowski, S.; Brotosudarmo, T. H. P.; Jung,C.; Zumbusch, A.; Ehrl, M.; Scheer, H.; Hofmann, E.; Hiller,R. G.; Bräuchle, C. Monitoring Fluorescence of IndividualChromophores in Peridinin–chlorophyll–protein ComplexUsing Single Molecule Spectroscopy. Biochim. Biophys. Acta -Bioenerg. 2007, 1767, 956–964.[WoS]
  • [25] Hofmann, E.; Wrench, P. M.; Sharples, F. P.; Hiller, R. G.; Welte,W.; Diederichs, K. Structural Basis of Light Harvesting byCarotenoids: Peridinin-Chlorophyll-Protein from AmphidiniumCarterae. Science 1996, 272, 1788–1791.
  • [26] Schulte, T.; Niedzwiedzki, D. M.; Birge, R. R.; Hiller, R. G.;Polívka, T.; Hofmann, E.; Frank, H. A. Identification of aSingle Peridinin Sensing Chl-a Excitation in ReconstitutedPCP by Crystallography and Spectroscopy. PNAS 2009, 106,20764–20769.
  • [27] Mao, S.; Pu, H.; Chen, J. Graphene Oxide and Its Reduction:Modeling and Experimental Progress. RSC Adv. 2012, 2,2643–2662.[Crossref]
  • [28] Kamińska, I.; Barras, A.; Coffinier, Y.; Lisowski, W.; Niedziółka-Jönsson, J.; Woisel, P.; Lyskawa, J.; Opałło, M.; Siriwardena,A.; Boukherroub, R.; Szunerits, S. Preparation of a responsivecarbohydrate-coated biointerface based on graphene/azidoterminatedtetrathiafulvalene nanohybrid material, ACS Appl.Mater. Interfaces 2012, 4, 5386-5393[WoS][Crossref]
  • [29) Krajnik, B.; Schulte, T.; Piątkowski, D.; Czechowski, N.;Hofmann, E.; Mackowski, S. SIL-based Confocal FluorescenceMicroscope for Investigating Individual Nanostructures., CentralEuropean Journal of Physics 2011, 9, 293-299.[WoS]
  • [30] Fellahi, O.; Das, M. R.; Coffinier, Y.; Szunerits, S.; Hadjersi,T.; Maamache, M.; Boukherroub, R. Silicon Nanowire Arrays-Induced Graphene Oxide Reduction under UV Irradiation.Nanoscale 2011, 3, 4662–4669.[WoS][Crossref]
  • [31] Twardowska, M.; Kamińska, I.; Wiwatowski, K.; Ashraf, K. U.;Cogdell, R. J.; Mackowski, S.; Niedziółka-Jönsson, J. FluorescenceEnhancement of Photosynthetic Complexes Separated fromNanoparticles by a Reduced Graphene Oxide Layer. Appl. Phys.Lett. 2014, 104, 093103.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nansp-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.