Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

On the SERS depolarization ratio


Title variants

Languages of publication



The Raman depolarization ratio is a quantity
that can be easily measured experimentally and offers
unique information on the Raman polarizability tensor
of molecular vibrations. In Surface Enhanced Raman
Scattering (SERS), molecules are near-field coupled with
optical nanoantennas and their scattering properties
are strongly affected by the radiation patterns of the
nanoantenna. The polarization of the SERS photons is
consequently modified, affecting, in a non trivial way, the
measured value of the SERS depolarization ratio. In this
article we elaborate a model that describes how the SERS
depolarization ratio is influenced by the nanoantenna
re-radiation properties, suggesting how to retrieve
information on the Raman polarizability from SERS







Physical description


21 - 7 - 2014
23 - 3 - 2015
6 - 11 - 2014


  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Dipartimento di Fisica e Scienze della Terra, Università
    di Messina, Viale F. Stagno D’Alcontres, 31, 98166 Messina, Italy
  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • CNR, Istituto per i Processi
    Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy


  • [1] Novotny, L. and Van Hulst, N. (2011) Antennas for light, Nat.Photonics, 5, pp. 83-90.[Crossref]
  • [2] Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.;Brongersma, M. L. (2010) Plasmonics for extreme light concentrationand manipulation, Nat. Mater., 9, pp. 193-204.[Crossref][WoS]
  • [3] Moskovits, M. (1985) Surface-Enhanced Raman Spectroscopy.Rev. Mod. Phys. 57, pp. 783–826.
  • [4] Le Ru, E.; Etchegoin, P. (2009) Principles of Surface EnhancedRaman Spetroscopy (Elsevier, Amsterdam).
  • [5] Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. (1992). SurfaceenhancedRaman scattering. J. Phys. Condens. Mat., 4, pp.1143-1212.[Crossref]
  • [6] Geddes, C. D.; Lakowicz, J. R. (2002) Metal-enhancedfluorescence, J. Fluoresc., 12, pp. 121-129.[Crossref]
  • [7] Farahani, J.N.; Pohl, D.W.; Eisler, H.J.; Hecht, B. (2005) SingleQuantum Dot Coupled to a Scanning Optical Antenna: ATunable Superemitter, Phys. Rev. Lett., 95, 017402.[Crossref]
  • [8] Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mullen,K.; Moerner, W. E. (2005) Large single-molecule fluorescenceenhancements produced by a bowtie nanoantenna, Nat.Photonics 2009, 3, 654-657.[WoS]
  • [9] Hartstein, A.; Kirtley, R. J.; Tsang, C. J. (1980) Enhancement ofthe Infrared Absorption from Molecular Monolayers with ThinMetal Overlayers, Phys. Rev. Lett., 45, pp. 201-204.[Crossref]
  • [10] Neubrech, F.; Pucci, A.; Cornelius, T.W.; Karim, S.; Garcia-Etxarri, A.; Aizpurua, J. (2008) Resonant Plasmnic andVibrational Coupling in a Tailored Nanoantenna for InfraredDetection, Phys. Rev. Lett., 101, art no. 157403.[Crossref][WoS]
  • [11] Homola, J. (2008) Surface plasmon resonance sensors fordetection of chemical and biological species, Chem. Rev., 108,pp. 462-493.[Crossref][WoS]
  • [12] Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz,J. R.; Geddes, C. D., (2005) Metal-enhanced fluorescence: anemerging tool in biotechnology, Curr. Opin. Biotech., 16, pp.55-62.[Crossref]
  • [13] Xie, W.; Schlucker, S. (2013) Medical applications of surfaceenhancedRaman scattering, Phys. Chem. Chem. Phys., 15, pp.5329-5344.[Crossref][WoS]
  • [14] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; VanDuyne, R. P. (2008) Biosensing with plasmonic nanosensors,Nat. Mater., 7, pp. 442-453.[Crossref][WoS]
  • [15] D’Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech,F.; Messina, E.; Fazio, B.; Marago, O. M.; Di Fabrizio, E.; dela Chapelle, M. L.; Gucciardi, P.G.; Pucci, A. (2013) OpticalNanoantennas for Multiband Surface-Enhanced Infrared andRaman Spectroscopy. ACS Nano, 7, pp. 3522-3531[WoS]
  • [16] Foti, A.; D’Andrea, C.; Bonaccorso, F.; Lanza, M.; Calogero, G.;Messina, E.; Maragò, O. M.; Fazio, B.; Gucciardi, P. G. (2013) AShape-Engineered Surface-Enhanced Raman Scattering OpticalFiber Sensor Working from the Visible to the Near-Infrared,Plasmonics, 8, pp. 13-23.[Crossref][WoS]
  • [17] Messina, E., Cavallaro, E., Cacciola, A., Saija, R., Borghese, F.,Denti, P., Fazio, B., D’Andrea, C., Gucciardi, P. G., Iatì, M. A.,Meneghetti, M., Compagnini, G., Amendola, V., and Maragò, O.M. (2011). Manipulation and Raman spectroscopy with opticallytrapped metal nanoparticles obtained by pulsed laser ablationin liquids. J. Phys. Chem. C, 115, 5115-5122.[Crossref][WoS]
  • [18] Le Ru, E.; Etchegoin, P. (2006) Rigorous Justification ofthe |E|^4 Enhancement Factor in Surface Enhanced RamanSpectroscopy, Chem. Phys. Lett., 423, pp. 63-66.[Crossref]
  • [19] Nagasawa, F.; Takase, M.; Nabika, H.; Murakishi, K. (2011)Polarization Characteristics of Surface-Enhanced RamanScattering from a Small Number of Molecules at the Gap of aMetal Nano-Dimer, Chem. Comm., 47, pp. 4514-4516[Crossref]
  • [20] Le Ru, E. C.; Grand, J.; Félidj, N.; Aubard, J.; Lévi, G.; Hohenau,a; Krenn, J. R.; Blackie, E.; Etchegoin, P. G. (2008) ExperimentalVerification of the SERS Electromagnetic Model beyond the|E|^4 Approximation: Polarization Effects, J. Phys. Chem. C.,112, pp. 8117-8121.[WoS]
  • [21] Le Ru, E. C.; Meyer, M.; Blackie, E.; Etchegoin, P. G. (2008)Advanced Aspects of Electromagnetic SERS EnhancementFactors at a Hot Spot, J. Raman Spectrosc., 39, pp. 1127-1134[WoS][Crossref]
  • [22] Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M. (2007) Surface-Enhanced Raman Spectroscopy and Nanogeometry:The Plasmonic Origin of SERS, J. Phys. Chem. C, 11, pp.17985-17988[Crossref]
  • [23] Schatz, G. C. ; Young, M. A.; Van Duyne, R. P. (2006) Electromagneticmechanism of SERS, Top. Appl. Phys., 103, pp. 19-45[Crossref]
  • [24] Wokaun, A. (1984) Surface-Enhanced ElectromagneticProcesses. Solid State Phys., 38, pp. 223-294
  • [25] Hao, E.; Schatz, G. C. (2004) Electromagnetic Fields AroundSilver Nanoparticles and Dimers, J. Chem Phys., 120, pp.357-366
  • [26] Schnell, M.; Garcia-Etxarri, A. ; Huber A.J.; Crozier, K.;Alkorta, J.; Aizpurua, J.; Hillenbrand, R. (2009) Controlling theNear-Field Oscillations of Loaded Plasmonic Nanoantennas,Nat. Photonics., 3, pp. 287-291[Crossref][WoS]
  • [27] Schnell, M.; Garcia-Etxarri, A. ; Alkorta, J. ; Aizpurua, J.; Hillenbrand, R. (2010) Phase-Resolved Mapping of theNear-Field Vector and Polarization State in Nanoscale AntennaGaps, Nano Lett., 10, pp. 3524-3528[WoS][Crossref]
  • [28] Quin, L. ; Zou, S. ; Xue, C. ; Atkinson, A. ; Schatz, G. C., Mirkin,C. A. (2006) Designing, fabricating, and imaging Raman hotspots, Proc. Natl. Acad. Sci., 103, pp. 13300-13303[Crossref]
  • [29] Garcia-Vidal, F. J.; Pendry, J. B. (1996) Collective Theory forSurface Enhanced Raman Scattering, Phys. Rev. Lett., 77, pp.1163-1166[Crossref]
  • [30] Nie, S. M.; Emory, S. R. (1997) Probing Single Molecules andSingle Nanoparticles by Surface-Enhanced Raman Scattering,Science, 275, pp. 1102-1106
  • [31] Grand, J.; De La Chapelle, M.L.; Bijeon, J.-L.; Adam, P.-M.;Vial, A.; Royer, P. (2005) Role of Localized Surface Plasmonsin Surface-Enhanced Raman Scattering of Shape-ControlledMetallic Particles in Regular Arrays, Phys. Rev. B, 73, art. no.033407[Crossref]
  • [32] Baik, J. M.; Lee, S. J.; Moskovits, M. (2009) Polarized Surface-Enhanced Raman Spectroscopy from Molecules Adsorbed inNano-Gaps Produced by Electromigration in Silver Nanowires,Nano Lett., 9, pp. 672-679[WoS][Crossref]
  • [33] Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P.; Xu, H. X.(2008) Polarization Dependence of Surface-Enhanced RamanScattering in Gold Nanoparticle-Nanowire Systems, Nano Lett.,8, pp. 2497-2502[Crossref][WoS]
  • [34] Shegai, T.; Li, Z.; Dadosh, T.; Zhang, Z.; Xu, H.; Haran, G. (2008)Managing Light Polarization via Plasmon-Molecule Interactionswithin an Asymmetric Metal Nanoparticle Trimer, Proc. Natl.Acad. Sci. U.S.A., 105, pp. 16448-16453[Crossref][WoS]
  • [35] Bosnick, K. A.; Jiang, J.; Brus, L. E. (2002) Fluctuations andLocal Symmetry in Single-Molecule Rhodamine 6G RamanScattering on Silver Nanocrystal Aggregates, J. Phys. Chem. B,106, pp. 8096–8099.[Crossref]
  • [36] Jiang, J.; Bosnick, K.A.; Maillard, M.; Brus, L. E. (2003) SingleMolecule Raman Spectroscopy at the Junctions of Large AgNanocrystals, J. Phys. Chem. B, 107, pp. 9964-9972[Crossref]
  • [37] Xu, H. X.; Käll, M. (2003) Polarization-DependentSurface-Enhanced Raman Spectroscopy of Isolated SilverNanoaggregates, ChemPhysChem, 4, pp. 1 001-1005
  • [38] Fazio, B.; D’Andrea, C.; Bonaccorso, F.; Irrera, A.; Calogero,G.; Vasi, C.; Gucciardi, P. G.; Allegrini, M.; Toma, A.; Chiappe,D.; Martella, C.; de Mongeot, F. B. (2011) Re-RadiationEnhancement in Polarized Surface-Enhanced Resonant RamanScattering of Randomly Oriented Molecules on Self-OrganizedGold Nanowires, ACS Nano, 5, pp. 5945-5956.[Crossref][WoS]
  • [39] Long, D. A. (2002) The Raman Effect (Wiley and Sons)
  • [40] Le Ru, E. C.; Etchegoin, P. G.; Grand, J.; Felidj, N.; Aubard, J.;Levi, G.; Hohenau, A.; Krenn, J. R. (2008) Surface EnhancedRaman Spectroscopy on Nanolithography-Prepared Substrates,Curr. Appl. Phys., 8, pp. 467-470[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.