Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 2 | 1 |

Article title

Nano-proximity direct ion beam writing

Content

Title variants

Languages of publication

EN

Abstracts

EN
Focused ion beam (FIB) milling with a 10 nm
resolution is used to directly write metallic metasurfaces
and micro-optical elements capable to create structured
light fields. Surface density of fabricated nano-features,
their edge steepness as well as ion implantation
extension around the cut line depend on the ion
beam intensity profile. The FIB beam intensity cross
section was evaluated using atomic force microscopy
(AFM) scans of milled line arrays on a thin Pt film.
Approximation of two Gaussian intensity distributions
describes the actual beam profile composed of central
high intensity part and peripheral wings. FIB fabrication
reaching aspect ratio of 10 in gold film is demonstrated.

Publisher

Journal

Year

Volume

2

Issue

1

Physical description

Dates

received
2 - 9 - 2015
accepted
23 - 11 - 2015
online
25 - 2 - 2016

Contributors

  • Centre
    for Micro-Photonics, Faculty of Science, Engineering and Technology,
    Swinburne University of Technology, Hawthorn, VIC 3122,
    Australia, & Melbourne Centre for Nanofabrication, 151 Wellington
    Road, Clayton, VIC 3168, Australia
  • Centre
    for Micro-Photonics, Faculty of Science, Engineering and Technology,
    Swinburne University of Technology, Hawthorn, VIC 3122,
    Australia, & Melbourne Centre for Nanofabrication, 151 Wellington
    Road, Clayton, VIC 3168, Australia
author
  • The Institute of Microelectronics Madrid, Isaac Newton,
    8 PTM, 28760, Spain,
  • Centre
    for Micro-Photonics, Faculty of Science, Engineering and Technology,
    Swinburne University of Technology, Hawthorn, VIC 3122,
    Australia, & Melbourne Centre for Nanofabrication, 151 Wellington
    Road, Clayton, VIC 3168, Australia
  • University of Bordeaux, CNRS,
    Laboratoire Ondes et Matière d’Aquitaine, 351 cours de la libération,
    33400 Talence, France
  • University of Bordeaux, CNRS,
    Laboratoire Ondes et Matière d’Aquitaine, 351 cours de la libération,
    33400 Talence, France
  • Centre
    for Micro-Photonics, Faculty of Science, Engineering and Technology,
    Swinburne University of Technology, Hawthorn, VIC 3122,
    Australia, & Melbourne Centre for Nanofabrication, 151 Wellington
    Road, Clayton, VIC 3168, Australia

References

  • [1] G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G.Molis, G. Valušis, R. A. Lewis, and S. Juodkazis. Thz photomixerwith milled nanoelectrodes on LT-GaAs. Applied Physics A,117(2):439–444, 2014.[Crossref][WoS]
  • [2] R. Levi-Setti. Proton scanning microscopy: feasibility andpromise. Scanning Electron Microscopy, 125, 1974.
  • [3] W. H. Escovitz, T. R. Fox, and R. Levi-Setti. Scanningtransmission ion microscope with a field ion source.Proceedings of the National Academy of Sciences,72(5):1826–1828, 1975.
  • [4] G. Seniutinas, G. Gervinskas, A. Balcytis, F. Clark, Y. Nishijima,A. Krotkus, G. Molis, G. Valušis, and S. Juodkazis. Nanoscaleprecision in ion milling for optical and terahertz antennas. InSPIE OPTO, pages 93740P–93740P. International Society forOptics and Photonics, 2015.
  • [5] C. Marrian and D. M. Tennant. Nanofabrication. Journal ofVacuum Science & Technology A, 21(5):S207–S215, 2003.[Crossref]
  • [6] S. Juodkazis, L. Rosa, S. Bauerdick, L. Peto, R. El-Ganainy,and S. John. Sculpturing of photonic crystals by ion beamlithography: towards complete photonic bandgap at visiblewavelengths. Optics Express, 19(7):5802–5810, 2011.[Crossref][WoS]
  • [7] J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A.Golovchenko. Ion-beam sculpting at nanometre length scales.Nature, 412(6843):166–169, 2001.
  • [8] J.Li, M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko.DNA molecules and configurations in a solid-state nanoporemicroscope. Nature Materials, 2(9):611–615, 2003.[Crossref]
  • [9] A. Kotnala and R. Gordon. Double nanohole optical tweezersvisualize protein P53 suppressing unzipping of singleDNA-hairpins. Biomedical Optics Express, 5(6):1886, 2014.[WoS][Crossref]
  • [10] S. Bauerdick, L. Bruchhaus, P. Mazarov, A. Nadzeyka, R.Jede, J. Fridmann, J. E. Sanabia, B. Gila, and B. R Appleton.Multispecies focused ion beam lithography system and itsapplications. Journal of Vacuum Science & Technology B,31(6):06F404, 2013.[WoS]
  • [11] C. Chang and A. Sakdinawat. Ultra-high aspect ratiohigh-resolution nanofabrication for hard x-ray diffractiveoptics. Nature Communications, 5, 4243, 2014.[Crossref][WoS]
  • [12] S. Tongay, M. Lemaitre, J. Fridmann, A. F. Hebard, B. P. Gila, andB.R. Appleton. Drawing graphene nanoribbons on sic by ionimplantation. Applied Physics Letters, 100(7):073501, 2012.[Crossref]
  • [13] E. J. R. Vesseur, R. De Waele, H. J. Lezec, H. A. Atwater, F.J.Garcia De Abajo, and A. Polman. Surface plasmon polaritonmodes in a single-crystal au nanoresonator fabricatedusing focused-ion-beam milling. Applied Physics Letters,92(8):083110, 2008.[Crossref]
  • [14] G. Gervinskas, G. Seniutinas, L. Rosa, and S. Juodkazis. Arraysof arbitrarily shaped nanoparticles: Overlay-errorless direct ionwrite. Advanced Optical Materials, 1(6):456–459, 2013.[WoS][Crossref]
  • [15] U. Levy, H. C. Kim, C. H. Tsai, and Y. Fainman. Near-infrareddemonstration of computer-generated holograms implementedby using subwavelength gratings with space-variantorientation. Optics Letters, 30(16):2089–2091, 2005.[Crossref]
  • [16] J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.C. Yuan, and F. Capasso. Polarization-controlled tunabledirectional coupling of surface plasmon polaritons. Science,340(6130):331–334, 2013.[WoS]
  • [17] O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U.Sennhauser, and G. L. Bona. Helium focused ion beamfabricated plasmonic antennas with sub-5 nm gaps.Nanotechnology, 24(39):395301, 2013.[WoS][Crossref]
  • [18] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan,M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, andB. Luk’yanchuk. Split-ball resonator as a three-dimensionalanalogue of planar split-rings. Nature Communications, 5,3104, 2014.[WoS][Crossref]
  • [19] Q. Wei, K. D. Li, J. Lian, and L. Wang. Angular dependence ofsputtering yield of amorphous and polycrystalline materials.Journal of Physics D: Applied Physics, 41(17):172002, 2008.[Crossref]
  • [20] S. Tan, R. Livengood, Y. Greenzweig, Y. Drezner, and D. Shima.Probe current distribution characterization technique forfocused ion beam. Journal of Vacuum Science & Technology B,30(6):06F606, 2012.[Crossref]
  • [21] E. Brasselet, G. Gervinskas, G. Seniutinas, and S. Juodkazis.Topological shaping of light by closed-path nanoslits. PhysicalReview Letters, 111(19):193901, 2013.[WoS][Crossref]
  • [22] J. Orloff, J. Z. Li, and M. Sato. Experimental study of a focusedion beam probe size and comparison with theory. Journal ofVacuum Science & Technology B, 9(5):2609–2612, 1991.[Crossref]
  • [23] J. G. Lopes, J. Rocha, L. M. Redondo, and F. C. Alegria. Highresolution ion beam profile measurement system. Proceedingsof ICALEPCS2011, Grenoble, France, 2012.
  • [24] C. E. Sosolik, A. C. Lavery, E. B. Dahl, and B. H. Cooper. Atechnique for accurate measurements of ion beam currentdensity using a faraday cup. Review of Scientific Instruments,71(9):3326–3330, 2000.[Crossref]
  • [25] J.B. Wang and Y.L. Wang. A novel procedure for measuring theabsolute current density profile of a focused gallium-ion beam.Applied Physics Letters, 69(18):2764–2766, 1996.[Crossref]
  • [26] C. M. Park, J. A. Bain, T. W. Clinton, P. A. A. Van der Heijden, andT. J. Klemmer. Measurement of Ga implantation profiles in thesidewall and bottom of focused-ion-beam etched structures.Applied Physics Letters, 84(17):3331–3333, 2004.[Crossref]
  • [27] D. Petit, C. C. Faulkner, S. Johnstone, D. Wood, and R. P.Cowburn. Nanometer scale patterning using focused ion beammilling. Review of Scientific Instruments, 76(2):026105, 2005.[Crossref]
  • [28] C. Vieu, G. B. Assayag, and J. Gierak. Observation andsimulation of focused ion beam induced damage. NuclearInstruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms, 93(4):439–446, 1994.
  • [29] R. G. Forbes. Understanding how the liquid-metal ion sourceworks. Vacuum, 48 (1):85–97, 1997.[Crossref]
  • [30] J. Anguita, R. Alvaro, and F. Espinosa. A new experimentalmethod to obtain the ion beam profile of focused ion beamnanotechnology systems. IJMEM, 1:61, 2012.
  • [31] Y. Yamamura, Y. Itikawa, and N. Itoh. Angular dependence ofsputtering yields of monatomic solids. Institute of PlasmsPhysics IPPJ-AM-26, Nagoya University, 1, 1983.
  • [32] Y. Yamamura and H. Tawara. Energy dependence ofion-induced sputtering yields from monatomic solids atnormal incidence. Atomic Data and Nuclear Data Tables,62(2):149–253, 1996.[Crossref]
  • [33] Focused ion beam sputtering yield calculator. http://www.asu.edu/clas/csss/NUE/FIBSputterCalcYamamura.html, 2015Jul.
  • [34] X. Wang, S. Xie, J. Liu, S. O. Kucheyev, and Y. M. Wang.Focused-ion-beam assisted growth, patterning, andnarrowing the size distributions of ZnO nanowires for variableoptical properties and enhanced nonmechanical energyconversion. Chemistry of Materials, 25(14):2819–2827, 2013.[WoS][Crossref]
  • [35] M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto,and A. Passaseo. Three dimensional chiral metamaterialnanospirals in the visible range by vertically compensatedfocused ion beam induced-deposition. Advanced OpticalMaterials, 2(2):154–161, 2014.[WoS][Crossref]
  • [36] W. McKenzie, J. Pethica, and G. Cross. A direct-write,resistless hard mask for rapid nanoscale patterning ofdiamond. Diamond and Related Materials, 20(5):707–710,2011.[Crossref][WoS]
  • [37] G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S.Juodkazis. 3D nano-structures for laser nano-manipulation.Beilstein Journal of Nanotechnology, 4(1):534–541, 2013.[Crossref][WoS]
  • [38] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F.Capasso, and Z. Gaburro. Light propagation with phasediscontinuities: generalized laws of reflection and refraction.Science, 334(6054):333–337, 2011.[WoS]
  • [39] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma. Dielectricgradient metasurface optical elements. Science,345(6194):298–302, 2014.[WoS]
  • [40] A. Nadzeyka, L. Peto, S. Bauerdick, M. Mayer, K. Keskinbora,C. Grévent, M. Weigand, M. Hirscher, and G. Schütz. Ionbeam lithography for direct patterning of high accuracy largearea x-ray elements in gold on membranes. MicroelectronicEngineering, 98:198–201, 2012.[WoS][Crossref]
  • [41] C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B.Huang. Creating optical near-field orbital angular momentumin a gold metasurface. Nano Letters, 15(4):2746–2750, 2015.[Crossref][WoS]
  • [42] E. Karimi, S. A .Schulz, I. De Leon, H. Qassim, J. Upham, andR. W. Boyd. Generating optical orbital angular momentum atvisible wavelengths using a plasmonic metasurface. Light:Science & Applications, 3(5):e167, 2014.[WoS][Crossref]
  • [43] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, andS. Zhang. Metasurface holograms reaching 80% efficiency.Nature Nanotechnology, 10(4):308–312, 2015.[Crossref][WoS]
  • [44] D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis,and E. Brasselet. Tailoring orbital angular momentum of lightin the visible domain with metallic metasurfaces. AdvancedOptical Materials, DOI: 10.1002/adom.201500494, 2015.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nanofab-2015-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.