PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 2 | 1 |
Article title

Evaporative edge lithography of a liposomal drug
microarray for cell migration assays

Content
Title variants
Languages of publication
EN
Abstracts
EN
Lipid multilayer microarrays are a promising
approach to miniaturize laboratory procedures by taking
advantage of the microscopic compartmentalization
capabilities of lipids. Here, we demonstrate a new method
to pattern lipid multilayers on surfaces based on solvent
evaporation along the edge where a stencil contacts a
surface called evaporative edge lithography (EEL). As an
example of an application of this process, we use EEL
to make microarrays suitable for a cell-based migration
assay. Currently existing cell migration assays require a
separate compartment for each drug which is dissolved
at a single concentration in solution. An advantage of
the lipid multilayer microarray assay is that multiple
compounds can be tested on the same surface. We
demonstrate this by testing the effect of two different
lipophilic drugs, Taxol and Brefeldin A, on collective cell
migration into an unpopulated area. This particular assay
should be scalable to test of 2000 different lipophilic
compounds or dosages on a standard microtiter plate
area, or if adapted for individual cell migration, it would
allow for high-throughput screening of more than 50,000
compounds per plate.
Publisher

Journal
Year
Volume
2
Issue
1
Physical description
Dates
received
22 - 5 - 2015
online
24 - 7 - 2015
accepted
26 - 6 - 2015
Contributors
  • Department of
    Biological Sciences, Florida State University, Tallahassee, FL, 32306-
    4370, USA
author
  • Department of Physics, Florida State University, Tallahassee,
    FL, 32306-4350, USA
  • Department of
    Biological Sciences, Florida State University, Tallahassee, FL, 32306-
    4370, USA
  • National High Magnetic Field Laboratory, 1800
    East Paul Dirac Drive, Florida State University, Tallahassee, FL 32310-
    3706, USA
  • Department of
    Biological Sciences, Florida State University, Tallahassee, FL, 32306-
    4370, USA
  • Integrative NanoScience
    Institute, Florida State University, Tallahassee, FL, 32306, USA
References
  • [1] Lenhert S., Brinkmann F., Laue T., Walheim S., VannahmeC., Klinkhammer S. , et al., Lipid multilayer gratings, Nat.Nanotechnol., 2010, 5, 275-279.[Crossref]
  • [2] Lenhert S., Sun P., Wang Y.H., Fuchs H., Mirkin C.A., Massivelyparallel dip-pen nanolithography of heterogeneous supportedphospholipid multilayer patterns, Small, 2007, 3, 71-75.[Crossref]
  • [3] Sekula S., Fuchs J., Weg-Remers S., Nagel P., Schuppler S.,Fragala J., et al., Multiplexed Lipid Dip-Pen Nanolithographyon Subcellular Scales for the Templating of Functional Proteinsand Cell Culture, Small, 2008, 4, 1785-1793.[Crossref]
  • [4] Lowry T.W., Kusi-Appiah A., Guan J., Van Winkle D.H., DavidsonM.W., Lenhert S., Materials Integration by Nanointaglio, Adv.Mater. Int., 2014, 1, 1-5.[Crossref]
  • [5] Majd S., Mayer M., Generating Arrays with High Content andMinimal Consumption of Functional Membrane Proteins, J. Am.Chem. Soc., 2008, 130, 16060-16064.
  • [6] Nafday O.A., Lowry T.W., Lenhert S., Multifunctional LipidMultilayer Stamping, Small 2012, 8, 1021-1028.[Crossref]
  • [7] Mathieu M., Schunk D., Franzka S., Mayer C., Hartmann N.,Temporal stability of photothermally fabricated micropatternsin supported phospholipid multilayers, J. Vac. Sci. Technol. A,2010, 28, 953-957.[Crossref]
  • [8] Diguet A., Le Berre M., Chen Y., Baigl D., Preparation ofPhospholipid Multilayer Patterns of Controlled Size andThickness by Capillary Assembly on a MicrostructuredSubstrate, Small, 2009, 5, 1661-1666.[Crossref]
  • [9] Brinker C. J., Lu Y. F., Sellinger A., Fan H. Y., Evaporationinducedself-assembly: Nanostructures made easy, Adv. Mater.,1999, 11, 579-585.[Crossref]
  • [10] Yuan B., Xing L.L., Zhang Y.D., Lu Y., Mai Z. H., Li M.,Self-assembly of highly oriented lamellar nanoparticlephospholipidnanocomposites on solid surfaces, J. Am. Chem.Soc., 2007, 129, 11332-11333.
  • [11] Cai Y.J., Zhao Z., Chen J.X., Yang T.L., Cremer P.S., DeflectedCapillary Force Lithography, ACS Nano, 2012, 6, 1548-1556.[Crossref]
  • [12] Jeong H.E., Kwak R., Khademhosseini A., Suh K.Y., UV-assistedcapillary force lithography for engineering biomimeticmultiscale hierarchical structures: From lotus leaf to gecko foothairs, Nanoscale, 2009, 1, 331-338.[Crossref]
  • [13] Suh K.Y., Kim Y.S., Lee H.H., Capillary force lithography, Adv.Mater., 2001, 13, 1386-1389.[Crossref]
  • [14] Anrather D., Smetazko M., Saba M., Alguel Y., Schalkhammer T.,Supported membrane nanodevices, J. Nanosci. Nanotechnol.,2004, 4, 1-2.
  • [15] Kusi-Appiah A.E., Vafai N., Cranfill P.J., Davidson M.W., LenhertS., Lipid multilayer microarrays for in vitro liposomal drugdelivery and screening, Biomaterials, 2012, 33, 4187-4194.[Crossref]
  • [16] Majd S., Mayer M., Hydrogel stamping of arrays of supportedlipid bilayers with various lipid compositions for the screeningof drug–membrane and protein–membrane interactions,Angew. Chem., 2005, 117, 6855-6858.[Crossref]
  • [17] Diaz-Mochon J.J., Tourniaire G., Bradley M., Microarrayplatforms for enzymatic and cell-based assays, Chem. Soc.Rev., 2007, 36, 449-457.[Crossref]
  • [18] Bailey S.N., Sabatini D.M., Stockwell B.R., Microarrays of smallmolecules embedded in biodegradable polymers for use inmammalian cell-based screens, Proc. Natl. Acad. Sci. U. S. A.,2004, 101, 16144-16149.[Crossref]
  • [19] Tourniaire G., Collins J., Campbell S., Mizomoto H., Ogawa S.,Thaburet J.F., et al., Polymer microarrays for cellular adhesion,Chem. Comm., 2006, 2118-2120.[Crossref]
  • [20] Balakin K.V., Savchuk N.P., Tetko I.V., In silico approachesto prediction of aqueous and DMSO solubility of drug-likecompounds: Trends, problems and solutions, Curr. Med.Chem., 2006, 13, 223-241.[Crossref]
  • [21] Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T.,Opinion - Migrating cancer stem cells - an integrated conceptof malignant tumour progression, Nat. Rev. Cancer 2005, 5,744-749.[Crossref]
  • [22] Sampieri K., Fodde R., Cancer stem cells and metastasis,Semin. Cancer Biol., 2012, 22, 187-193.[Crossref]
  • [23] Eilken H.M., Adams R.H., Dynamics of endothelial cell behaviorin sprouting angiogenesis, Curr. Opin. Cell Biol., 2010, 22,617-625.[Crossref]
  • [24] Griffioen A.W., Molema G., Angiogenesis: Potentials forpharmacologic intervention in the treatment of cancer, cardiovasculardiseases, and chronic inflammation, Pharmacol. Rev.,2000, 52, 237-268.
  • [25] Witte M.B., Barbul A., General principles of wound healing,Surg. Clin. North Am., 1997, 77, 509-528.[Crossref]
  • [26] Aman A., Piotrowski T., Cell migration during morphogenesis,Dev. Biol., 2010, 341, 20-33.
  • [27] Weijer C.J., Collective cell migration in development, J. Cell Sci.,2009, 122, 3215-3223.[Crossref]
  • [28] Liang C.C., Park A.Y., Guan J.L., In vitro scratch assay: aconvenient and inexpensive method for analysis of cellmigration in vitro, Nat. Protoc., 2007, 2, 329-333.[Crossref]
  • [29] Valster A., Tran N.L., Nakada M., Berens M.E., Chan A.Y.,Symons M., Cell migration and invasion assays, Methods,2005, 37, 208-215.[Crossref]
  • [30] van Horssen R., ten Hagen T.L.M., Crossing Barriers: The NewDimension of 2D Cell Migration Assays, J. Cell. Physiol., 2011,226, 288-290.
  • [31] Yarrow J.C., Totsukawa G., Charras G.T., Mitchison T.J.,Screening for cell migration inhibitors via automatedmicroscopy reveals a rho-kinase inhibitor, Chem. Biol., 2005,12, 385-395.[Crossref]
  • [32] Lenhert S., Meier M.B., Meyer U., Chi L.F., Wiesmann H.P.,Osteoblast alignment, elongation and migration on groovedpolystyrene surfaces patterned by Langmuir-Blodgettlithography, Biomaterials, 2005, 26, 563-570.[Crossref]
  • [33] Poujade M., Grasland-Mongrain E., Hertzog A., JouanneauJ., Chavrier P., Ladoux B., et al., Collective migration of anepithelial monolayer in response to a model wound, Proc. Natl.Acad. Sci. U. S. A., 2007, 104, 15988-15993.[Crossref]
  • [34] Shin K.D., Lee M.Y., Shin D.S., Lee S., Son K.H., Koh S., et al.,Blocking tumor cell migration and invasion with biphenylisoxazole derivative KRIBB3, a synthetic molecule thatinhibits Hsp27 phosphorylation. J. Biol. Chem.. 2005, 280,41439-41448.
  • [35] Attoub S., Hassan A.H., Vanhoecke B., Iratni R., TakahashiT., Gaben A.-M., et al., Inhibition of cell survival, invasion,tumor growth and histone deacetylase activity by the dietaryflavonoid luteolin in human epithelioid cancer cells, Eur. J.Pharmacol., 2011, 651, 18-25.
  • [36] Gough W., Hulkower K.I., Lynch R., McGlynn P., Uhlik M.,Yan L., Lee J.A., A Quantitative, Facile, and High-ThroughputImage-Based Cell Migration Method Is a Robust Alternative tothe Scratch Assay, J. Biomol. Screen., 2011, 16, 155-163.[Crossref]
  • [37] Tavana H., Kaylan K., Bersano-Begey T., Luker K.E., Luker G.D.,Takayama S., Rehydration of Polymeric, Aqueous, BiphasicSystem Facilitates High Throughput Cell Exclusion Patterning for Cell Migration Studies, Adv. Funct. Mater., 2011, 21,2920-2926.[Crossref]
  • [38] Chung S., Sudo R., Mack P.J., Wan C.R., Vickerman V., KammR.D., Cell migration into scaffolds under co-culture conditionsin a microfluidic platform, Lab Chip, 2009, 9, 269-275.[Crossref]
  • [39] Conant C.G., Nevill J.T., Schwartz M., Ionescu-Zanetti C., WoundHealing Assays in Well Plate-Coupled Microfluidic Devices withControlled Parallel Flow, J. Lab. Autom., 2010, 15, 52-57.
  • [40] Huang X.W., Li L., Tu Q., Wang J.C., Liu W.M., Wang X.Q., etal., On-chip cell migration assay for quantifying the effectof ethanol on MCF-7 human breast cancer cells, Microfluid.Nanofluid., 2011, 10, 1333-1341.[Crossref]
  • [41] Kim B.J., Wu M.M., Microfluidics for Mammalian CellChemotaxis, Ann. Biomed. Eng. 2012, 40, 1316-1327.[Crossref]
  • [42] Liu T.J., Lin B.C., Qin J.H., Carcinoma-associated fibroblastspromoted tumor spheroid invasion on a microfluidic 3Dco-culture device, Lab Chip, 2010, 10, 1671-1677.[Crossref]
  • [43] Wang L., Zhu J., Deng C., Xing W.L., Cheng J., An automatic andquantitative on-chip cell migration assay using self-assembledmonolayers combined with real-time cellular impedancesensing, Lab Chip, 2008, 8, 872-878.[Crossref]
  • [44] Wang Z., Kim M.-C., Marquez M., Thorsen T., High-densitymicrofluidic arrays for cell cytotoxicity analysis, Lab Chip, 2007,7, 740-745.[Crossref]
  • [45] Onuki-Nagasaki R., Nagasaki A., Hakamada K., Uyeda T.Q.P.,Fujita S., Miyake M., Miyake J., On-chip screening method forcell migration genes based on a transfection microarray, LabChip, 2008, 8, 1502-1506.[Crossref]
  • [46] Timm D.M., Chen J., Sing D., Gage J.A., Haisler W.L., NeeleyS.K., et al., A high-throughput three-dimensional cell migrationassay for toxicity screening with mobile device-basedmacroscopic image analysis, Sci. Rep., 2013, 3, 1-8.
  • [47] Nafday O.A., Lenhert S., High-throughput optical quality controlof lipid multilayers fabricated by dip-pen nanolithography,Nanotechnology, 2011, 22, 1-7.
  • [48] Groves J.T., Mahal L.K., Bertozzi C.R., Control of cell adhesionand growth with micropatterned supported lipid membranes,Langmuir, 2001, 17, 5129-5133.[Crossref]
  • [49] Tang F., Hughes J.A., Synthesis of a single-tailed cationic lipidand investigation of its transfection, J. Control. Release, 1999,62, 345-358.[Crossref]
  • [50] Fayad W., Rickardson L., Haglund C., Olofsson M.H., D’ArcyP., Larsson R., et al., Identification of Agents that InduceApoptosis of Multicellular Tumour Spheroids: Enrichment forMitotic Inhibitors with Hydrophobic Properties, Chem. Biol.Drug Des., 2011, 78, 547-557.[Crossref]
  • [51] Zhu J.-W., Nagasawa H., Nagura F., Mohamad S.B., Uto Y.,Ohkura K., Hori H., Elucidation of strict structural requirementsof Brefeldin A as an inducer of differentiation and apoptosis,Bioorg. Med. Chem., 2000, 8, 455-463.[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nanofab-2015-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.