Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 2 | 1 |

Article title

Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology


Title variants

Languages of publication












Physical description


19 - 3 - 2015
21 - 2 - 2015
8 - 5 - 2015


  • Biophysical Technology
    Laboratory, Department of Chemistry; Chemical Engineering,
    Chalmers University of Technology, Kemivägen 10, 41296
    Gothenburg, Sweden
  • School of Engineering and Applied Sciences, Department
    of Physics, Harvard University, 17 Oxford St., Cambridge, MA
    02138, USA


  • [1] Abounit S., Zurzolo C., Wiring through tunneling nanotubes -from electrical signals to organelle transfer, J. Cell Sci., 2012 ,125, 1089-1098.[Crossref][WoS]
  • [2] Kumar N.M., Gilula N.B., The gap junction communicationchannel, Cell, 1996, 84, 381-388.
  • [3] Fevrier B., Raposo G., Exosomes: endosomal-derived vesiclesshipping extracellular messages, Curr. Opin. Cell Biol., 2004, 16,415-421.[Crossref]
  • [4] Kimura S., Hase K., Ohno H., The molecular basis of inductionand formation of tunneling nanotubes, Cell Tissue Res., 2013,352, 67-76.[WoS]
  • [5] Davis D.M., Sowinski S., Membrane nanotubes: dynamiclong-distance connections between animal cells, Nat. Rev. Mol.Cell Biol., 2008, 9, 431-436.[WoS][Crossref]
  • [6] Marzo L., Gousset K., Zurzolo C., Multifaceted roles of tunnelingnanotubes in intercellular communication, Front. Physiol., 2012,3, 72.[WoS][Crossref]
  • [7] Hurtig J., Chiu D.T., Onfelt B., Intercellular nanotubes: insightsfrom imaging studies and beyond, Wiley Interdiscip. Rev.Nanomed. Nanobiotechnol., 2010, 2, 260-276.[Crossref][WoS]
  • [8] Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.H.,Nanotubular highways for intercellular organelle transport,Science, 2004, 303, 1007-1010.
  • [9] Pascoal P., Kosanic D., Gjoni M., Vogel H., Membrane nanotubesdrawn by optical tweezers transmit electrical signals betweenmammalian cells over long distances, Lab Chip, 2010, 10,2235-2241.[WoS][Crossref]
  • [10] Lachambre S., Chopard C., Beaumelle B., Preliminary characterisationof nanotubes connecting T-cells and their use by HIV-1,Biol. Cell, 2014, 106, 394-404.[WoS]
  • [11] Takahashi A., Kukita A., Li Y.J., Zhang J.Q., Nomiyama H., YamazaT., et al., Tunneling nanotube formation is essential for theregulation of osteoclastogenesis, J. Cell. Biochem., 2013, 114,1238-1247.[WoS]
  • [12] Thayanithy V., Babatunde V., Dickson E.L., Wong P., Oh S., KeX., et al., Tumor exosomes induce tunneling nanotubes in lipidraft-enriched regions of human mesothelioma cells, Exp. CellRes., 2014, 323, 178-188.[WoS]
  • [13] Pasquier J., Guerrouahen B.S., Al Thawadi H., Ghiabi P., MalekiM., Abu-Kaoud N., et al., Preferential transfer of mitochondriafrom endothelial to cancer cells through tunneling nanotubesmodulates chemoresistance, J. Transl. Med., 2013, 11, 94.[WoS][Crossref]
  • [14] Costanzo M., Abounit S., Marzo L., Danckaert A., Chamoun Z.,Roux P., et al., Transfer of polyglutamine aggregates in neuronalcells occurs in tunneling nanotubes, J. Cell Sci., 2013, 126,3678-3685.[WoS][Crossref]
  • [15] Rupp I., Sologub L., Williamson K.C., Scheuermayer M.,Reininger L., Doerig C., et al., Malaria parasites form filamentouscell-to-cell connections during reproduction in the mosquitomidgut, Cell Res., 2011, 21, 683-696.[WoS][Crossref]
  • [16] Agnati L., Guidolin D., Maura G., Marcoli M., Leo G., CaroneC., et al., Information handling by the brain: proposal of a new“paradigm” involving the roamer type of volume transmissionand the tunneling nanotube type of wiring transmission, J.Neural Transm., 2014, 121, 1431-1449.[WoS]
  • [17] Agnati L.F., Fuxe K., Extracellular-vesicle type of volumetransmission and tunnelling-nanotube type of wiringtransmission add a new dimension to brain neuro-glialnetworks, Phil. Trans. R. Soc. B, 2014, 369, 20130505.
  • [18] Gozen I., Jesorka A., Instrumental Methods to CharacterizeMolecular Phospholipid Films on Solid Supports, Anal. Chem.,2012, 84, 822-838.[WoS]
  • [19] Karlsson M., Davidson M., Karlsson R., Karlsson A., BergenholtzJ., Konkoli Z., et al., Biomimetic nanoscale reactors andnetworks, Annu. Rev. Phys. Chem., 2004, 55, 613-649.
  • [20] Jesorka A., Stepanyants N., Zhang H.J., Ortmen B., HakonenB., Orwar O., Generation of phospholipid vesicle-nanotubenetworks and transport of molecules therein, Nat. Protoc., 2011,6, 791-805.[Crossref][WoS]
  • [21] Lizana L., Bauer B., Orwar O., Controlling the rates ofbiochemical reactions and signaling networks by shapeand volume changes, Proc. Natl. Acad. Sci. USA, 2008, 105,4099-4104.
  • [22] Gozen I., Billerit C., Dommersnes P., Jesorka A., Orwar O.,Calcium Ion Controlled Nanoparticle Induced Tubulation inSupported Flat Phospholipid Vesicles, Biophys. J., 2012, 102,94a.[Crossref]
  • [23] Castillo J.A., Narciso D.M., Hayes M.A., Bionanotubule Formationfrom Surface-Attached Liposomes Using Electric Fields,Langmuir, 2009, 25, 391-396.[Crossref][WoS]
  • [24] Frusawa H., Manabe T., Kagiyama E., Hirano K., KametaN., Masuda M., et al., Electric moulding of dispersed lipidnanotubes into a nanofluidic device, Sci. Rep., 2013, 3, 2165.[WoS][Crossref]
  • [25] Sugihara K., Chami M., Derenyi I., Voros J., Zambelli T., DirectedSelf-Assembly of Lipid Nanotubes from Inverted HexagonalStructures, ACS Nano, 2012, 6, 6626-6632.[WoS][Crossref]
  • [26] Karlsson M., Sott K., Cans A.S., Karlsson A., Karlsson R., OrwarO., Micropipet-assisted formation of microscopic networks ofunilamellar lipid bilayer nanotubes and containers, Langmuir,2001, 17, 6754-6758.[Crossref]
  • [27] Zhang H., Xu S., Jeffries G.D.M., Orwar O., Jesorka A., Artificialnanotube connections and transport of molecular cargo betweenmammalian cells, Nano Commun. Netw., 2013, 4, 197-204.[Crossref]
  • [28] Davidson M., Karlsson M., Sinclair J., Sott K., Orwar O.,Nanotube-vesicle networks with functionalized membranes andinteriors, J. Am. Chem. Soc., 2003, 125, 374-378.
  • [29] Bauer B., Davidson M., Orwar O., Direct reconstitution of plasmamembrane lipids and proteins in nanotube-vesicle networks,Langmuir, 2006, 22, 9329-9332.[Crossref]
  • [30] Kameta N., Minamikawa H., Masuda M., Supramolecular organicnanotubes: how to utilize the inner nanospace and the outerspace, Soft Matter, 2011, 7, 4539-4561.[WoS][Crossref]
  • [31] Sugihara K., Rustom A., Spatz J.P., Freely drawn single lipidnanotube patterns, Soft Matter, 2015, 11, 2029-2035.[WoS][Crossref]
  • [32] Wegrzyn I., Jeffries G.D.M., Nagel B., Katterle M., Gerrard S.R.,Brown T., et al., Membrane Protrusion Coarsening and Nanotubulationwithin Giant Unilamellar Vesicles, J. Am. Chem. Soc.,2011, 133, 18046-18049.[WoS]
  • [33] Markstrom M., Lizana L., Orwar O., Jesorka A., Thermoactuateddiffusion control in soft matter nanofluidic devices, Langmuir,2008, 24, 5166-5171.[WoS][Crossref]
  • [34] Czolkos I., Guan J., Orwar O., Jesorka A., Flow control ofthermotropic lipid monolayers, Soft Matter, 2011, 7, 6926-6933.[Crossref][WoS]
  • [35] Gozen I., Shaali M., Ainla A., Ortmen B., Poldsalu I, KustanovichK., et al., Thermal migration of molecular lipid films as acontactless fabrication strategy for lipid nanotube networks, LabChip, 2013, 13, 3822-3826.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.