Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 2 | 1 |

Article title

Transport characteristics of focused beam deposited nanostructures


Title variants

Languages of publication



We review the transport properties of different
nanostructures produced by ion- and electron-beam
deposition, as prepared as well as after certain treatments.
In general, the available literature indicates that the
transport properties are determined by conduction
processes typical for disordered metallic grains embedded
in a carbon-rich matrix, including intergrain tunneling and
variable range hopping mechanisms. Special emphasis is
given to the superconducting behavior found in certain
Tungsten-Carbide nanostructures that, in a certain field
and temperature range, is compatible with that of granular
superconductivity. This granular superconductivity leads
to phenomena like magnetic field oscillations as well as
anomalous hysteresis loops in the magnetoresistance.








Physical description


18 - 2 - 2015


  • Division of Superconductivity and Magnetism, Institut
    für Experimentelle Physik II, Universität Leipzig, Linnéstraße 5,
    D-04103 Leipzig, Germany
  • Division of Superconductivity and Magnetism, Institut
    für Experimentelle Physik II, Universität Leipzig, Linnéstraße 5,
    D-04103 Leipzig, Germany


  • [1] Van Dorp W. F., Hagen C. W., A critical literature review of focused electron beam induced deposition, J. App. Phys., 2008, 104, 08130.
  • [2] Utke I., Hoffmann P., Melngailis J., Gas-assisted focused electron beam and ion beam processing and fabrication, Journal of Vacuum Science & Technology B, 2008, 26, 1197-1276.[Crossref]
  • [3] Gabureac M., Bernau L., Utke I., Boero G., Granular CoC nano-Hall sensors by focused-beam-induced deposition, Nanotechnology, 2010, 21, 115503.[Crossref]
  • [4] Dhakal P., McMahon G., Shepard S., Kirkpatrick T., Oh J. I., Naughton M. J., Direct-write, focused ion beam-deposited, 7 K superconducting C-Ga-O nanowires, Appl. Phys. Lett., 2010, 96, 262511.[Crossref]
  • [5] Weirich P. M., Schwalb C. H., Winhold M., Huth M., Superconductivity in the system MoxCyGazOδ prepared by focused ion beam induced deposition, Journal of Applied Physics, 2014, 115, 174315.[Crossref]
  • [6] De Teresa J. M., Córdoba R., Fernández-Pacheco A., Montero O., Strichovanec P., Ibarra M. R., Origin of the Difference in the Resistivity of As-Grown Focused-Ion- and Focused-Electron-Beam-Induced Pt Nanodeposits, Journal of Nanomaterials 2009, 936863.
  • [7] Mott N. F., Davis E. A., Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, UK, 1979.
  • [8] Möbius A., Frenzel C., Thielsch R., Rosenbaum R., Adkins C. J., Schreiber M., Bauer H.-D., Grötzschel R., Hoffmann V., Krieg T., et al., Metal-insulator transition in amorphous Si1-xNix: evidence for Mott‘s minimum metallic conductivity, Phys. Rev. B, 1999, 60, 14209-14223.
  • [9] Arena C., Kleinsorge B., Robertson J., Milne W. I., Welland M. E., Hopping conductivity in disordered systems, App. Phys., 1999, 85, 1609-1615.
  • [10] Prasad V., Magnetotransport in the amorphous carbon films near the metal-insulator transition, Solid State Communications, 2008, 145, 186-191.
  • [11] Lin J. F., Bird J. P., Rotkina L., Sergeev A., Mitin U., Large effects due to electron-phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires, App. Phys. Lett., 2004, 84, 3828-3830.
  • [12] Lin J. F., Bird J. P., Rotkina L., Bennett P. A., Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects, App. Phys. Lett., 2003, 82, 802-804.
  • [13] Lin J. F., Bird J. P., Rotkina L., Low-temperature decoherence in disordered Pt nanowires, Physica E, 2003, 19, 112-116.[Crossref]
  • [14] Lin J. F., Bird J. P., Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures, J. Phys. Condens. Matter, 2002, 14, 501-596.[Crossref]
  • [15] Echternach P. M., Gershenson M. E., Bozler H. M., Bogdanov A. L., Nilsson B., Temperature dependence of the resistance of one-dimensional metal films with dominant Nyquist phase breaking, Phys. Rev. B, 1994, 50, 5748-5751.[Crossref]
  • [16] Barzola-Quiquia J., Schulze S., Esquinazi P., Transport properties and atomic structure of ion-beam-deposited W, Pd and Pt nanostructures, Nanotechnology, 2009, 20, 165704.[Crossref]
  • [17] Wakaya F., Tsukatani Y., Yamasaki N., Murakami K., Abo S., Takai M., Transport Properties of Beam-Deposited Pt Nanowires, J. Phys.: Conference Series, 2006, 38, 120-215.
  • [18] Peñate-Quesada L., Mitra J., Dawson P., Non-linear electronic transport in Pt nanowires deposited by focused ion beam, Nanotechnology, 2007,18, 215203.[Crossref]
  • [19] Liao Z. M., Xu J., Zhang X. Z., Yu D. P., The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires, Nanotechnology, 2008, 19, 305402.[Crossref]
  • [20] Fernández-Pacheco A., De Teresa J. M., Córdoba R., Ibarra M. R., Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition, Phys. Rev. B, 2009, 79, 174204.[Crossref]
  • [21] Glazman L. I. , Matveev K. A., Inelastic resonant tunneling of electrons through a potential barrier, Sov. Phys. JETP, 1988, 67, 163.
  • [22] Marzi G. D., Iacopino D., Quinn A. J., Redmonda G., Probing intrinsic transport properties of single metal nanowires: Direct-write contact formation using a focused ion beam, J. App. Phys., 2004, 96, 3458-3462.
  • [23] Dynes R. C., Garno J. P., Metal-Insulator Transition in Granular Aluminum, Phys. Rev. Lett., 1981, 46, 137-140.[Crossref]
  • [24] Ravindranath V., Rao M. S. R., Rangarajan G., Lu Y., Klein J., Klingeler R., Uhlenbruck S., Büchner B., Gross R., Magnetotransport studies and mechanism of Ho- and Y-doped La0.7Ca0.3MnO3, Phys. Rev. B, 2011, 63, 184434-184441.
  • [25] Shafarman W. N., Koon D. W., Castner T. G., DC conductivity of arsenic-doped silicon near the metal-insulator transition, Phys. Rev. B, 1989, 40, 1216-1231.[Crossref]
  • [26] Delahaye J., Brison J. P., Berger C., Evidence for Variable Range Hopping Conductivity in the Ordered Quasicrystal i-AlPdRe, Phys. Rev. Lett., 1998, 81, 4204-4207.[Crossref]
  • [27] Anderson P. W., Absence of Diffusion in Certain Random Lattices, Phys. Rev., 1958, 109, 1492-1505.[Crossref]
  • [28] Langford R. M., Wang T.-X., Ozkaya D., Reducing the resistivity of electron and ion beam assisted deposited Pt, Microelectronic Engineering, 2007, 84, 784-788.[Crossref]
  • [29] McLachlan I., Rosenbaum R., Albers A., Eytan G., Grammatica N., Pickup J., Zaken E.,The temperature and volume fraction dependence of the resistivity of granular Al-Ge near the percolation threshold, J. Phys. Condens. Matter., 1993, 5, 4829.[Crossref]
  • [30] Sharma S. N., Shivaprasad S. M., Kohli S., Rastogi A., Substrate temperature dependence of electrical conduction in nanocrystalline CdTe:TiO2 sputtered films, Pure Appl. Chem., 2002, 74, 1739-1749.
  • [31] Stiller M., Barzola-Quiquia J., Lorite I., Esquinazi P., Kirchgeorg R., Albu S., Schmuki P., Transport properties of single TiO2 nanotubes, Appl. Phys. Lett., 2013, 103, 173108.
  • [32] Lee P. A., Ramakrishnan T. V., Disordered electronic systems, Rev. Mod. Phys., 1985, 57, 287-337.[Crossref]
  • [33] Liao Z. M., Xu J., Song Y. P., Zhang Y., Xing Y. J., Yu D. P., Quantum interference effect in single Pt(Ga)/C nanowire, Appl. Phys. Lett., 2005, 87, 182112.[Crossref]
  • [34] Rotkina L., Oh S., Eckstein J. N., Rotkin S. V., Logarithmic behavior of the conductivity of electron-beam deposited granular Pt/C nanowires, Phys. Rev. B, 2005, 72, 233407.[Crossref]
  • [35] Altland A., Glazman L. I., Kamenev A., Electron Transport in Granular Metals, Phys. Rev. Lett., 2004, 92, 026801.[Crossref]
  • [36] Feigel’man M. V., Ioselevich A. S., Skvortsov M. A., Quantum Percolation in Granular Metals, Phys. Rev. Lett., 2004, 93, 136403.
  • [37] Blanter Y. M., Vinokur V. M., Glazman L. I., Weak localization in metallic granular media, Phys. Rev. B, 2006, 73, 165322.[Crossref]
  • [38] Spoddig D., Schindler K., Rödiger P., Barzola-Quiquia J., Fritsch K., Mulders H., Esquinazi P., Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope, Nanotechnology, 2007 18, 495202.[Crossref]
  • [39] Efros A. L., Shklovskii B. I., Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C: Solid State Phys., 1975, 8, L49.
  • [40] Shedd G. M., Lezec H., Dubner A. D., Melngailis J., Focused ion beam induced deposition of gold, App. Phys. Lett., 1986, 49, 1584-1586.
  • [41] Fransson J., Lin J.-F., Rotkina L., Bird J. P., Bennett P. A., Signatures of bandlike tunneling in granular nanowires, Phys. Rev. B, 2005, 72, 113411.[Crossref]
  • [42] Aladashvili D. I., Adamiya Z. A., Lavdovskii K. G., Levin E. I., Shklovskii B. I., Negative differential resistance in the hopping conductivity region in silicon, JETP Letters, 1988, 47, 466-469.
  • [43] Mel’nikov A. P., Gurvich Y. A., Shestakov L. N., Gershenzon E. M., Magnetic field effects on the nonohmic impurity conduction of uncompensated crystalline silicon, JETP Letters, 2001, 73, 44-47.
  • [44] Tsukatani Y., Yamasaki N., Murakami K., Wakaya F., Takai M., Transport Properties of Pt Nanowires Fabricated by Beam-Induced Deposition, Jpn. J. Appl. Phys., 2005, 44, 5683-5686.
  • [45] Rotkina L., Lin J. F., Bird J. P., Nonlinear current-voltage characteristics of Pt nanowires and nanowire transistors fabricated by electron-beam deposition, App. Phys. Lett., 2003, 83, 4426.
  • [46] Botman A., Mulders J. J. L., Hagen C. W., Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective, Nanotechnology, 2009, 20, 372001.[Crossref]
  • [47] Fernández-Pacheco A., De Teresa J. M., Córdoba R., Ibarra M. R., Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, J. Phys. D: Appl. Phys., 2009, 42, 055005.[Crossref]
  • [48] Kötzler J., Gil W., Anomalous Hall resistivity of cobalt films: Evidence for the intrinsic spin-orbit effect, Phys. Rev. B, 2005, 72, 060412.[Crossref]
  • [49] Leven B. , Dumpich G., Resistance behavior and magnetization reversal analysis of individual Co nanowires, Phys. Rev. B, 2005, 71, 064411.[Crossref]
  • [50] Lavrijsen R., Córdoba R., Schoenaker F. J., Ellis T. H., Barcones B., Kohlhepp J. T., Swagten H. J. M., Koopmans B., De Teresa J. M., Magén C., et al, Fe:O:C grown by focused-electron-beam induced deposition: magnetic and electric properties, Nanotechnology, 2011, 22, 025302.[Crossref]
  • [51] Córdoba R., Lavrijsen R., Fernández-Pacheco A., Ibarra M. R., Schoenaker F., Ellis T., Barcones-Campo B., Kohlhepp J. T., Swagten H. J. M., Koopmans B., et al., , Giant anomalous Hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition, J. Phys. D: Appl. Phys., 2012, 45, 035001.[Crossref]
  • [52] Porrati F., Sachser R., Walz M. M., Vollnhals F., Steinrück H. P., Marbach H., Huth M., Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth, J. Phys. D: Appl. Phys., 2011, 44, 425001.[Crossref]
  • [53] Córdoba R., Sesé J., De Teresa J. M., Ibarra M. R., High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current, Microelectron. Eng., 2010, 87, 1550-1553.[Crossref]
  • [54] Ziese M., Extrinsic magnetotransport phenomena in ferromagnetic oxides, Rep. Prog. Phys., 2002, 65, 143-249. [Crossref]
  • [55] Sadki E. S., Ooi S., Hirata K., Focused-ion-beam-induced deposition of superconducting nanowires, Appl. Phys. Lett., 2004, 85, 6206.[Crossref]
  • [56] Li Y., Sinitskii A., Tour J., Electronic two-terminal bistable graphitic memories, Nature Mater., 2008, 7, 966-971.[Crossref]
  • [57] Luxmoore I. J., Ross I., Cullis A., Fry P., Orr J., Buckle P., Jefferson J., Low temperature electrical characterization of tungsten nano-wires fabricated by electron and ion beam induced chemical vapor deposition, Thin Solid Films, 2007, 515, 6791-6797.
  • [58] Willens R. H., Buehler E., The superconductivity of the monocarbides of Tungsten and Molybdenum, Appl. Phys. Lett., 1965, 7, 25. [Crossref]
  • [59] Dai J., Onomitsu K., Kometani R., Krockenberger Y., Yamaguchi H., Ishihara S., Warisawa S., Superconductivity in Tungsten-Carbide Nanowires Deposited from the Mixtures of W(CO)6 and C14H10, Jpn. J. Appl. Phys., 2013, 52, 075001.
  • [60] Barzola-Quiquia J., Dusari S., Chiliotte C., Esquinazi P., Andreev reflection and granular superconductivity features observed in mesoscopic samples using amorphous tungsten carbide superconductors, J. Supercond. Nov. Magn., 2011, 24, 463-469.[Crossref]
  • [61] Guillamón I., Suderow H., Vieira S., Fernández-Pacheco A., Sesé J., Córdoba R., De Teresa J. M., Ibarra M. R., Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam, New J. of Phys., 2008, 10, 093005.
  • [62] Rödiger P., Esquinazi P., García N., Andreev Oscillations in Normal-Superconducting-Normal Nanostructures, J. Supercond. Nov. Magn., 2009, 22, 331-335.[Crossref]
  • [63] Esquinazi P., García N., Barzola-Quiquia J., Rödiger P., Schindler K., Yao J.-L., Ziese M., ndications for intrinsic superconductivity in highly oriented pyrolytic graphite, Phys. Rev. B, 2008, 78, 134516.[Crossref]
  • [64] Dusari S., Barzola-Quiquia J., Esquinazi P., Superconducting Behavior of Interfaces in Graphite: Transport Measurements of Micro-constrictions, J. Supercond. Nov. Magn., 2011, 24, 401-405.[Crossref]
  • [65] Andreev A. F., The Thermal Conductivity of the Intermediate State in Superconductors, Sov. Phys. JETP, 1964, 19, 1228.
  • [66] Blonder G. E., Tinkham M., Klapwijk T. M., Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B, 1982, 25, 4515.[Crossref]
  • [67] Garcia N., Flores F., Guinea F., Theory of tunneling in metal-superconducto devices: Supercurrents in the superconductor gap at zero temperatures, J. Vac. Sci. Technol. A, 1988, 6, 323-326.[Crossref]
  • [68] Gerber A., Deutscher G., Ac-to-dc Conversion and Aharonov-Bohm Effect in Percolating Superconducting Films, Phys. Rev. Lett., 1990, 64, 1585.[Crossref]
  • [69] Berdnorz J. G., Müller K. A., Possible high Tc superconductivity in the Ba-La-Cu-O system Z. Phys. B, 1986, 64, 189-193.
  • [70] Shapira Y. , Deutscher G., Semiconductor-superconductor transition in granular Al-Ge, Phys. Rev. B, 1983, 27, 4463-4466.[Crossref]
  • [71] Clem J. R., Granular and superconducting-glass properties of the high-temperature superconductors, Physica C, 1988, 50, 153-155.
  • [72] Senoussi S., Aguillon C., Hadjoudj S., The contribution of the intergrain currents to the low field hysteresis cycle of granular superconductors and the connection with the micro- and macrostructures, Physica C , 1991, 175, 215-225.
  • [73] Ji L., Rzchowski M. S., Anand N., Thinkam M., Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors, Phys. Rev. B, 1993, 47, 470-483.[Crossref]
  • [74] Kopelevich Y., dos Santos C., Moehlecke S., Machado A., Current-Induced Superconductor-Insulator Transition in Granular High-Tc Superconductors, 2001, arXiv:0108311.
  • [75] Felner I., Galstyan E., Lorenz B., Cao D., Wang Y. S., Xue Y. Y., Chu C. W., Magnetoresistance hysteresis and critical current density in granular RuSr2Gd2-xCexCu2O10-δ, Phys. Rev. B, 2005, 67, 134506.
  • [76] Balaev D. A., Gokhfeld D. M., Dubrovski A. A., Popkov S. I., Shaikhutdinov K., Petrov M. I., Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites, Journal of Experimental and Theoretical Physics, 2007, 105, 1174-1183.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.