Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Targeting FOXOs to slow aging


Title variants

Languages of publication



The key importance of FOXO transcription
factors and related pathways in the process of aging
renders them compelling targets in the quest for compounds
that could slow down the aging process. In this
review, we give a brief overview of what we know about
the role of FOXO proteins in aging and longevity and
describe how this knowledge might be of value in developing
future therapies aimed at extending lifespan and
health span in people. Given the potential of FOXO proteins
to impact on a variety of disorders such as cancer,
diabetes, neurodegeneration or immune system dysfunction,
novel therapeutic approaches based FOXO-targeting
strategies are expected to be a fertile area of research in
the near future.







Physical description


19 - 10 - 2015
26 - 7 - 2015
29 - 5 - 2015


  • Regenerative Medicine Program, Department of Biomedical
    Sciences and Medicine, University of Algarve, Campus de
    Gambelas, 8005-139 Faro, Portugal
  • The Buck Institute for
    Research on Aging, Novato, CA 94945, USA
  • The Buck Institute for
    Research on Aging, Novato, CA 94945, USA


  • [1] Alavez S, Lithgow GJ: Pharmacological maintenance of proteinhomeostasis could postpone age-related disease. Aging Cell2012, 11(2):187-191[Crossref]
  • [2] Dansen TB, Burgering BMT: Unravelling the tumor-suppressivefunctions of FOXO proteins. Trends Cell Biol 2008, 18:421-429[Crossref][PubMed]
  • [3] Zanella F, Link W, Carnero A: Understanding FOXO, new viewson old transcription factors. Curr Cancer Drug Targets 2010,10(2):135-146[Crossref][PubMed]
  • [4] Calnan DR, Brunet A: The FoxO code. Oncogene 2008,27(16):2276-2288[PubMed][Crossref]
  • [5] Zanella F, Dos Santos NR, Link W: Moving to the core:spatiotemporal analysis of Forkhead box O (FOXO) and nuclearfactor-kappaB (NF-kappaB) nuclear translocation. Traffic 2013,14(3):247-258[PubMed][Crossref]
  • [6] Bosch TC, Anton-Erxleben F, Hemmrich G, Khalturin K: TheHydra polyp: nothing but an active stem cell community. DevGrowth Differ 2010, 52(1):15-25[PubMed][Crossref]
  • [7] Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, ObergHH, Domazet-Loso T et al: Molecular signatures of the threestem cell lineages in hydra and the emergence of stem cellfunction at the base of multicellularity. Mol Biol Evol 2012,29(11):3267-3280[Crossref]
  • [8] Shimokawa I, Komatsu T, Hayashi N, Kim SE, Kawata T, Park S,Hayashi H, Yamaza H, Chiba T, Mori R: The life-extending effectof dietary restriction requires Foxo3 in mice. Aging Cell 2015
  • [9] Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S, Hayashi H,Chiba T, Mori R, Furuyama T, Mori N et al: FoxO1 is involved inthe antineoplastic effect of calorie restriction. Aging Cell 2010,9(3):372-382[Crossref][PubMed]
  • [10] Morris BJ, Willcox DC, Donlon TA, Willcox BJ: FOXO3: A MajorGene for Human Longevity - A Mini-Review. Gerontology 2015
  • [11] Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, TissenbaumHA, Ruvkun G: The Fork head transcription factor DAF-16transduces insulin-like metabolic and longevity signals in C.elegans. Nature 1997, 389(6654):994-999
  • [12] Kenyon C: The plasticity of aging: insights from long-livedmutants. Cell 2005, 120(4):449-460[Crossref][PubMed]
  • [13] Kwon ES, Narasimhan SD, Yen K, Tissenbaum HA: A new DAF-16isoform regulates longevity. Nature 2010, 466(7305):498-502
  • [14] Yen K, Narasimhan SD, Tissenbaum HA: DAF-16/Forkhead boxO transcription factor: many paths to a single Fork(head) in theroad. Antioxid Redox Signal 2011, 14(4):623-634
  • [15] Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT:Health span approximates life span among many supercentenarians:compression of morbidity at the approximate limit oflife span. J Gerontol A Biol Sci Med Sci 2012, 67(4):395-405[Crossref]
  • [16] Fries JF: Aging, natural death, and the compression ofmorbidity. N Engl J Med 1980, 303(3):130-135
  • [17] Hitt R, Young-Xu Y, Silver M, Perls T: Centenarians: theolder you get, the healthier you have been. Lancet 1999,354(9179):652-652
  • [18] Kau TR, Way JC, Silver PA: Nuclear transport and cancer: frommechanism to intervention. Nat Rev Cancer 2004, 4(2):106-117[Crossref]
  • [19] Maiese K, Chong ZZ, Shang YC, Hou J: Clever cancer strategieswith FoxO transcription factors. Cell cycle (Georgetown, Tex)2008, 7(24):3829-3839
  • [20] Rosado A, Zanella F, Garcia B, Carnero A, Link W: A dual-colorfluorescence-based platform to identify selective inhibitors ofAkt signaling. PLoS One 2008, 3(3):e1823[Crossref]
  • [21] Zanella F, Lorens JB, Link W: High content screening: seeing isbelieving. Trends Biotechnol 2010, 28(5):237-245[Crossref]
  • [22] Zanella F, Rosado A, Blanco F, Henderson BR, Carnero A, LinkW: An HTS approach to screen for antagonists of the nuclearexport machinery using high content cell-based assays. AssayDrug Dev Technol 2007, 5(3):333-341[Crossref]
  • [23] Zanella F, Rosado A, Garcia B, Carnero A, Link W: Chemicalgenetic analysis of FOXO nuclear-cytoplasmic shuttling byusing image-based cell screening. Chembiochem 2008,9(14):2229-2237[Crossref]
  • [24] Zanella F, Rosado A, Garcia B, Carnero A, Link W: Usingmultiplexed regulation of luciferase activity and GFPtranslocation to screen for FOXO modulators. BMC Cell Biol2009, 10:14[Crossref]
  • [25] Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ,Roberts TM, Clardy J, Sellers WR, Silver PA: A chemical geneticscreen identifies inhibitors of regulated nuclear export of aForkhead transcription factor in PTEN-deficient tumor cells.Cancer Cell 2003, 4(6):463-476[Crossref]
  • [26] Link W, Oyarzabal J, Serelde BG, Albarran MI, Rabal O, CebriaA, Alfonso P, Fominaya J, Renner O, Peregrina S et al: Chemicalinterrogation of FOXO3a nuclear translocation identifies potentand selective inhibitors of phosphoinositide 3-kinases. J BiolChem 2009, 284(41):28392-28400
  • [27] Gomez-Gutierrez JG, Souza V, Hao HY, Montes de Oca-Luna R,Dong YB, Zhou HS, McMasters KM: Adenovirus-mediated genetransfer of FKHRL1 triple mutant efficiently induces apoptosis inmelanoma cells. Cancer Biol Ther 2006, 5(7):875-883[Crossref]
  • [28] Hu MCT, Lee D-F, Xia W, Golfman LS, Ou-Yang F, Yang J-Y, ZouY, Bao S, Hanada N, Saso H et al: IkappaB kinase promotestumorigenesis through inhibition of forkhead FOXO3a. Cell2004, 117(2):225-237[Crossref]
  • [29] Maiese K, Chong ZZ, Shang YC: OutFOXOing disease anddisability: the therapeutic potential of targeting FoxO proteins.Trends Mol Med 2008, 14(April):219-227[Crossref]
  • [30] Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S,Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L et al:Small molecule activators of sirtuins extend Saccharomycescerevisiae lifespan. Nature 2003, 425(6954):191-196
  • [31] Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M,Sinclair D: Sirtuin activators mimic caloric restriction and delayageing in metazoans. Nature 2004, 430(7000):686-689
  • [32] Borra MT, Smith BC, Denu JM: Mechanism of humanSIRT1 activation by resveratrol. J Biol Chem 2005,280(17):17187-17195
  • [33] Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, DangN, Kerr EO, Kirkland KT, Fields S, Kennedy BK: Regulation ofyeast replicative life span by TOR and Sch9 in response tonutrients. Science (New York, NY) 2005, 310(5751):1193-1196
  • [34] Stefani M, Markus MA, Lin RCY, Pinese M, Dawes IW, Morris BJ:The effect of resveratrol on a cell model of human aging. Ann NY Acad Sci 2007, 1114:407-418[Crossref]
  • [35] Sin TK, Yung BY, Siu PM: Modulation of SIRT1-Foxo1 signalingaxis by resveratrol: implications in skeletal muscle aging andinsulin resistance. Cell Physiol Biochem 2015, 35(2):541-552[Crossref]
  • [36] Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML,Yen ML: Resveratrol promotes osteogenesis of humanmesenchymal stem cells by upregulating RUNX2 geneexpression via the SIRT1/FOXO3A axis. J Bone Miner Res 2011,26(10):2552-2563.[Crossref]
  • [37] Xia N, Strand S, Schlufter F, Siuda D, Reifenberg G, Kleinert H,Forstermann U, Li H: Role of SIRT1 and FOXO factors in eNOStranscriptional activation by resveratrol. Nitric Oxide 2013,32:29-35[Crossref]
  • [38] Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK:Resveratrol induces growth arrest and apoptosis throughactivation of FOXO transcription factors in prostate cancer cells.PLoS One 2010, 5(12):e15288[Crossref]
  • [39] Ganapathy S, Chen Q, Singh KP, Shankar S, Srivastava RK:Resveratrol enhances antitumor activity of TRAIL in prostatecancer xenografts through activation of FOXO transcriptionfactor. PLoS One 2010, 5(12):e15627[Crossref]
  • [40] Beher D, Wu J, Cumine S, Kim KW, Lu S-C, Atangan L, Wang M:Resveratrol is not a direct activator of SIRT1 enzyme activity.Chemical biology & drug design 2009, 74(6):619-624[Crossref]
  • [41] Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, RieraTV, Lee JE, E SY, Lamming DW et al: Evidence for a commonmechanism of SIRT1 regulation by allosteric activators. Science2013, 339(6124):1216-1219
  • [42] Hubbard BP, Sinclair DA: Small molecule SIRT1 activatorsfor the treatment of aging and age-related diseases. TrendsPharmacol Sci 2014, 35(3):146-154[Crossref]
  • [43] Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, FlynnD, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B et al:SRT1720, SRT2183, SRT1460, and resveratrol are not directactivators of SIRT1. J Biol Chem 2010, 285(11):8340-8351
  • [44] Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A,Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al: Resveratrolimproves health and survival of mice on a high-calorie diet.Nature 2006, 444(7117):337-342.
  • [45] Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, Gonzalez-MariscalI, Carlson OD, Sanghvi M, Moaddel R, Farhang K, Gadkaree SK et al: Resveratrol prevents beta-cell dedifferentiation innonhuman primates given a high-fat/high-sugar diet. Diabetes2013, 62(10):3500-3513[Crossref]
  • [46] Rascon B, Hubbard BP, Sinclair DA, Amdam GV: The lifespanextension effects of resveratrol are conserved in the honeybee and may be driven by a mechanism related to caloricrestriction. Aging (Albany NY) 2012, 4(7):499-508
  • [47] Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L,Cellerino A: Resveratrol prolongs lifespan and retards the onsetof age-related markers in a short-lived vertebrate. Curr Biol2006, 16(3):296-300[Crossref]
  • [48] Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, WardTM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA etal: The SIRT1 activator SRT1720 extends lifespan and improveshealth of mice fed a standard diet. Cell Rep 2014, 6(5):836-843[Crossref]
  • [49] Hoffmann E, Wald J, Lavu S, Roberts J, Beaumont C, HaddadJ, Elliott P, Westphal C, Jacobson E: Pharmacokinetics andtolerability of SRT2104, a first-in-class small molecule activatorof SIRT1, after single and repeated oral administration in man.Br J Clin Pharmacol 2013, 75(1):186-196
  • [50] Howells LM, Berry DP, Elliott PJ, Jacobson EW, HoffmannE, Hegarty B, Brown K, Steward WP, Gescher AJ: Phase Irandomized, double-blind pilot study of micronized resveratrol(SRT501) in patients with hepatic metastases--safety, pharmacokinetics,and pharmacodynamics. Cancer Prev Res (Phila)2011, 4(9):1419-1425
  • [51] Libri V, Brown AP, Gambarota G, Haddad J, Shields GS, DawesH, Pinato DJ, Hoffman E, Elliot PJ, Vlasuk GP et al: A pilotrandomized, placebo controlled, double blind phase I trial ofthe novel SIRT1 activator SRT2104 in elderly volunteers. PLoSOne 2012, 7(12):e51395
  • [52] Kampkotter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y,Proksch P, Watjen W: Increase of stress resistance and lifespanof Caenorhabditis elegans by quercetin. Comp Biochem PhysiolB Biochem Mol Biol 2008, 149(2):314-323
  • [53] Bartholome A, Kampkotter A, Tanner S, Sies H, Klotz LO:Epigallocatechin gallate-induced modulation of FoxO signalingin mammalian cells and C. elegans: FoxO stimulation is maskedvia PI3K/Akt activation by hydrogen peroxide formed in cellculture. Arch Biochem Biophys 2010, 501(1):58-64
  • [54] Ayyadevara S, Bharill P, Dandapat A, Hu C, Khaidakov M, MitraS, Shmookler Reis RJ, Mehta JL: Aspirin inhibits oxidant stress,reduces age-associated functional declines, and extendslifespan of Caenorhabditis elegans. Antioxid Redox Signal2013, 18(5):481-490
  • [55] Wan QL, Zheng SQ, Wu GS, Luo HR: Aspirin extends the lifespanof Caenorhabditis elegans via AMPK and DAF-16/FOXO indietary restriction pathway. Exp Gerontol 2013, 48(5):499-506[Crossref]
  • [56] Havermann S, Chovolou Y, Humpf HU, Watjen W: Caffeic acidphenethylester increases stress resistance and enhanceslifespan in Caenorhabditis elegans by modulation of theinsulin-like DAF-16 signalling pathway. PLoS One 2014,9(6):e100256[Crossref]
  • [57] Seo HW, Cheon SM, Lee MH, Kim HJ, Jeon H, Cha DS: CatalpolModulates Lifespan via DAF-16/FOXO and SKN-1/Nrf2Activation in Caenorhabditis elegans. Evid Based ComplementAlternat Med 2015, 2015:524878
  • [58] Golegaonkar S, Tabrez SS, Pandit A, Sethurathinam S, JagadeeshaprasadMG, Bansode S, Sampathkumar SG, Kulkarni MJ,Mukhopadhyay A: Rifampicin reduces advanced glycation endproducts and activates DAF-16 to increase lifespan in Caenorhabditiselegans. Aging Cell 2015, 14(3):463-473[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.