Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Recent Advances in Macromolecularly Imprinted
Polymers by Controlled Radical Polymerization
Techniques

Content

Title variants

Languages of publication

EN

Abstracts

EN
Molecularly imprinted polymers (MIPs) are
synthetic receptors with tailor-made recognition sites for
the target molecules. Their high molecular recognition
ability, good stability, easy preparation, and low cost
make them highly promising substitutes for biological
receptors. Recent years have witnessed rapidly increasing
interest in the imprinting of biomacromolecules and
especially proteins because of the great potential of
these MIPs in such applications as proteome analysis,
clinical diagnostics, and biomedicine. So far, some
useful strategies have been developed for the imprinting
of proteins and controlled radical polymerization
techniques have proven highly versatile for such purpose.
This mini-review describes recent developments in the
controlled preparation of proteins-imprinted polymers
via such advanced polymerization techniques.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

online
11 - 2 - 2016
received
11 - 8 - 2015
accepted
27 - 10 - 2015

Contributors

  • Key Laboratory of Functional
    Polymer Materials (Ministry of Education), State Key Laboratory
    of Medicinal Chemical Biology, Collaborative Innovation Center
    of Chemical Science and Engineering (Tianjin), and College of
    Chemistry, Nankai University, Tianjin 300071, P. R. China

References

  • [1] Atwood J.L., Davies J.E.D., Macnicol D.D., Vögtle F. (Eds),Comprehensive supramolecular chemistry, vol. 2., PergamonPress, Oxford, 1996.
  • [2] Ravikumar I., Ghosh P., Recognition and separation of sulfateanions, Chem. Soc. Rev., 2012, 41, 3077-3098.[Crossref]
  • [3] Vriezema D.M., Aragonès M.C., Elemans J.A.A.W., CornelissenJ.J.L.M., Rowan A.E., Nolte R.J.M., Self-assembled nanoreactors,Chem. Rev., 2005, 105, 1445-1489.[Crossref]
  • [4] Moreno-Bondi M.C., Benito-Peña M.E., Urraca J.L., OrellanaG., Immuno-like assays and biomimetic microchips, Top Curr.Chem., 2012, 325, 111-164.
  • [5] Haupt, K., Mosbach, K., Molecularly imprinted polymers andtheir use in biomimetic sensors, Chem. Rev., 2000, 100,2495-2504.[Crossref]
  • [6] Haupt K., Imprinted polymers-Tailor-made mimics of antibodiesand receptors, Chem. Commun., 2003, 171-178.[Crossref]
  • [7] Hilt, J.Z., Byrne, M.E., Configurational biomimesis in drugdelivery: Molecular imprinting of biologically significantmolecules, Adv. Drug Deliv. Rev., 2004, 56, 1599-1620.[Crossref]
  • [8] Alexander, C., Andersson, H.S., Andersson, L.I., Ansell, R.J.,Kirsch, N., Nicholls, I.A., O’Mahony, J., Whitcombe, M.J.,Molecular imprinting science and technology: a survey ofthe literature for the years up to and including 2003, J. Mol.Recognit., 2006, 19, 106-180.[Crossref]
  • [9] Zhang H., Ye L., Mosbach K., Non-covalent molecular imprintingwith emphasis on its application in separation and drugdevelopment, J. Mol. Recognit., 2006, 19, 248-259.[Crossref]
  • [10] Ye, L., Mosbach, K., Molecular imprinting: Synthetic materialsas substitutes for biological antibodies and receptors, Chem.Mater., 2008, 20, 859-868.[Crossref]
  • [11] Hoshino, Y., Shea, K.J., The evolution of plastic antibodies, J.Mater. Chem., 2011, 21, 3517-3521.[Crossref]
  • [12] Wulff, G., Liu, J., Design of biomimetic catalysts by molecularimprinting in synthetic polymers: The role of transition statestabilization, Acc. Chem. Res., 2012, 45, 239-247.[Crossref]
  • [13] Baggiani C., Anfossi L., Giovannoli C., MIP-basedimmunoassays: State of the art, limitations and perspectives,Mol. Imprint., 2013, 41-54.
  • [14] Zhang H., Water-compatible molecularly imprinted polymers:Promising synthetic substitutes for biological receptors,Polymer, 2014, 55, 699-714.[Crossref]
  • [15] Wackerlig J., Lieberzeit P.A., Molecularly imprinted polymernanoparticles in chemical sensing–Synthesis, characterisationand application, Sensor. Actuat. B: Chem., 2015, 207, 144-157.
  • [16] Bossi A., Bonini F., Turner A.P.F., Piletsky S.A., Molecularlyimprinted polymers for the recognition of proteins: The state ofthe art, Biosens. Bioelectron. 2007, 22, 1131-1137.[Crossref]
  • [17] Takeuchi T., Hishiya T., Molecular imprinting of proteinsemerging as a tool for protein recognition, Org. Biomol. Chem.,2008, 6, 2459-2467.[Crossref]
  • [18] Whitcombe M.J., Chianella I., Larcombe L., Piletsky S.A.,Noble J., Porter R., Horgan A., The rational development ofmolecularly imprinted polymer-based sensors for proteindetection, Chem. Soc. Rev., 2011, 40, 1547-1571.[Crossref]
  • [19] Kryscio D.R., Peppas N.A., Critical review and perspective ofmacromolecularly imprinted polymers, Acta Biomater, 2012, 8,461-473.[Crossref]
  • [20] Li S.J., Cao S., Whitcombe M.J., Piletsky S.A., Size matters:Challenges in imprinting macromolecules, Prog. Polym. Sci.,2014, 39, 145-163.[Crossref]
  • [21] Ding X., Heiden P.A., Recent Developments in molecularlyimprinted nanoparticles by surface imprinting techniques,Macromol. Mater. Eng., 2014, 299, 268-282.
  • [22] Zhang H., Application of controlled/“living” radical polymerizationtechniques in molecular imprinting, In: Ye L. (Ed.),Molecular imprinting: Principles and applications of micro- andnano-structured polymers, Pan Stanford Publishing Pte Ltd,2012.
  • [23] Wang A.R., Zhu S., Branching and gelation in atom transferradical polymerization of methyl methacrylate and ethyleneglycol dimethacrylate, Polym. Eng. Sci., 2005, 45, 720-727.[Crossref]
  • [24] Huang W., Baker G.L., Bruening M.L., Controlled synthesis ofcross-linked ultrathin polymer films by using surface-initiatedatom transfer radical polymerization, Angew. Chem. Int. Ed.,2001, 40, 1510-1512.[Crossref]
  • [25] Kanamori K., Hasegawa J., Nakanishi K., Hanada T., Facilesynthesis of macroporous cross-linked methacrylate gels byatom transfer radical polymerization, Macromolecules, 2008,41, 7186-7193.[Crossref]
  • [26] Achilleos M., Legge T.M., Perrier S., Patrickios C.S.,Poly(ethylene glycol)-based amphiphilic model conetworks:Synthesis by RAFT polymerization and characterization, J.Polym. Sci. Part A: Polym. Chem., 2008, 46, 7556-7565.[Crossref]
  • [27] Otsu T., Iniferter concept and living radical polymerization, J.Polym. Sci. Part A: Polym. Chem., 2000, 38, 2121-2136.[Crossref]
  • [28] Matyjaszewski K., Xia J., Atom transfer radical polymerization,Chem. Rev., 2001, 101, 2921-2990.[Crossref]
  • [29] Kamigaito M., Ando T., Sawamoto M., Metal-catalyzed livingradical polymerization, Chem. Rev., 2001, 101, 3689-3745.[Crossref]
  • [30] Moad G., Chiefari J., Chong B.Y.K., Krstina J., Mayadunne R.T.A.,Postma A., Rizzardo E., Thang S.H., Living free radical polymerizationwith reversible addition–fragmentation chain transfer(the life of RAFT), Polym. Int., 2000, 49, 993-1001.[Crossref]
  • [31] Hawker C.J., Bosman A.W., Harth E., New polymer synthesis bynitroxide mediated living radical polymerizations, Chem. Rev.,2001, 101, 3661-3688.[Crossref]
  • [32] Wang H.Y., Kobayashi T., Fujii N., Surface molecular imprintingon photosensitive dithiocarbamoyl polyacrylonitrilemembranes using photograft polymerization, J. Chem. Tech.Biotechnol., 1997, 70, 355-362.[Crossref]
  • [33] Gai Q.Q., Liu Q.Y., Li W.Y., He X.W., Chen L.X., Zhang Y.K.,Preparation of bovine hemoglobin-imprinted polymer beads viaphotografting surface-modified method, Chem. J. Chin. Univ.,2008, 29, 64-70.
  • [34] Qin L., He X.W., Zhang W., Li W.Y., Zhang Y.K., Surface-modifiedpolystyrene beads as photografting imprinted polymer matrixfor chromatographic separation of proteins, J. Chromatogr. A,2009, 1216, 807-814.[Crossref]
  • [35] Qin L., He X.W., Yuan X., Li W.Y., Zhang Y.K., Molecularlyimprinted beads with double thermosensitive gates forselective recognition of proteins, Anal. Bioanal. Chem., 2011,399, 3375-3385.
  • [36] Chen R.R., Qin L., Jia M., He X.W., Li W.Y., Novel surfacemodifiedmolecularly imprinted membrane prepared withiniferter for permselective separation of lysozyme, J. Membr.Sci., 2010, 363, 212-220.
  • [37] Patra S., Roy E., Madhuri R., Sharma P.K., Nano-iniferterbased imprinted sensor for ultra trace level detection ofprostate-specific antigen in both men and women, Biosens.Bioelectron., 2015, 66, 1-10.[Crossref]
  • [38] Barbey R., Lavanant L., Paripovic D., Schüwer N., Sugnaux C.,Tugulu S., Klok H.-A., Polymer brushes via surface-initiatedcontrolled radical polymerization: Synthesis, characterization,properties, and applications, Chem. Rev., 2009, 109,5437-5527.
  • [39] Matyjaszewski K., Atom transfer radical polymerization (ATRP):Current status and future perspectives, Macromolecules, 2012,45, 4015-4039.[Crossref]
  • [40] Heredia K.L., Bontempo D., Ly T., Byers J.T., Halstenberg S.,Maynard H.D., In situ preparation of protein-“smart” polymerconjugates with retention of bioactivity, J. Am. Chem. Soc.,2005, 127, 16955-16960.
  • [41] Gao W., Liu W., Mackay J.A., Zalutsky M.R., Toone, E.J., ChilkotiA., In situ growth of a stoichiometric PEG-like conjugate at aprotein’s N-terminus with significantly improved pharmacokinetics,Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 15231-15236.[Crossref]
  • [42] Peeler J.C., Woodman B.F., Averick S., Miyake-Stoner S.J.,Stokes A.L., Hess K.R., Matyjaszewski K., Mehl R.A., Geneticallyencoded initiator for polymer growth from proteins, J. Am.Chem. Soc., 2010, 132, 13575-13577.
  • [43] Strozyk M.S., Chanana M., Pastoriza-Santos I., Pérez-Juste J.,Liz-Marzán L.M., Protein/polymer-based dual-responsive goldnanoparticles with pH-dependent thermal sensitivity, Adv.Funct. Mater., 2012, 22, 1436-1444.[Crossref]
  • [44] Wei X., Li X., Husson S.M., Surface molecular imprinting byatom transfer radical polymerization, Biomacromolecules,2005, 6, 1113-1121.[Crossref]
  • [45] Zhao Z., Wang C., Guo M., Shi L., Fan Y., Long Y., Mi H.,Molecular imprinted polymer with cloned bacterial proteintemplate enriches authentic target in cell extract, FEBS Lett.,2006, 580, 2750-2754.
  • [46] Yin D., Ulbricht M., Protein-selective adsorbers by molecularimprinting via a novel two-step surface grafting method, J.Mater. Chem. B, 2013, 1, 3209-3219.[Crossref]
  • [47] Yin D., Ulbricht M., Antibody-imprinted membrane adsorbervia two-step surface grafting, Biomacromolecules, 2013, 14,4489-4496.[Crossref]
  • [48] Gai Q.Q., Qu F., Liu Z.J., Dai R.J., Zhang Y.K., Superparamagneticlysozyme surface-imprinted polymer prepared by atomtransfer radical polymerization and its application for proteinseparation, J. Chromatogr. A, 2010, 1217, 5035-5042.[Crossref]
  • [49] Gai Q.Q., Qu F., Zhang T., Zhang Y.K., The preparation of bovineserum albumin surface-imprinted superparamagnetic polymerwith the assistance of basic functional monomer and itsapplication for protein separation, J. Chromatogr. A, 2011, 1218,3489-3495.[Crossref]
  • [50] Yildirim E., Turan E., Caykara T., Construction of myoglobinimprinted polymer films by grafting from silicon surface, J.Mater. Chem., 2012, 22, 636-642.[Crossref]
  • [51] Sasaki S., Ooya T., Kitayama Y., Takeuchi T., Molecularlyimprinted protein recognition thin films constructed bycontrolled/living radical polymerization, J. Biosci. Bioeng.,2015, 119, 200-205.
  • [52] Zhang H., Jiang J., Zhang H.T., Zhang Y., Sun P., Efficientsynthesis of molecularly imprinted polymers with enzymeinhibition potency by the controlled surface imprintingapproach, ACS Macro Lett., 2013, 2, 566-570.
  • [53] Kamon Y., Matsuura R., Kitayama Y., Ooya T., Takeuchi T.,Precisely controlled molecular imprinting of glutathiones-transferase by orientated template immobilization usingspecific interaction with an anchored ligand on a goldsubstrate, Polym. Chem., 2014, 5, 4764-4771.[Crossref]
  • [54] Jiang J., Zhang Y., Guo X., Zhang H., Narrow or monodisperse,highly cross-linked, and “living” polymer microspheres byatom transfer radical precipitation polymerization, Macromolecules,2011, 44, 5893-5904[Crossref]
  • [55] Zhang H., Controlled/“living” radical precipitation polymerization:A versatile polymerization technique for advancedfunctional polymers, Eur. Polym. J., 2013, 49, 579-600.[Crossref]
  • [56] Titirici M.M., Sellergren B., Thin molecularly imprinted polymerfilms via reversible addition-fragmentation chain transferpolymerization, Chem. Mater., 2006, 18, 1773-1779.[Crossref]
  • [57] Yang H., Guo T.Y., Zhou D., Surface hydrophilic modificationwith well-defined glycopolymer for protein imprinting matrix,Int. J. Bio. Macromol., 2011, 48, 432-438.[Crossref]
  • [58] Li Q., Yang K., Liang Y., Jiang B., Liu J., Zhang, L., Liang Z.,Zhang Y.K., Surface protein imprinted core-shell particles forhigh selective lysozyme recognition prepared by reversibleaddition-fragmentation chain transfer strategy, ACS Appl.Mater. Interfaces 2014, 6, 21954-21960.[Crossref]
  • [59] Liu Y., Fang S., Zhai J., Zhao M., Construction of antibody-likenanoparticles for selective protein sequestration in living cells,Nanoscale, 2015, 7, 7162-7167.[Crossref]
  • [60] Yoshida E., Nitroxide-mediated photo-controlled/living radicalpolymerization of methacrylic acid, Open J. Polym. Chem.,2013, 3, 16-22.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_molim-2015-0005
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.