Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Effects of centrifugal stress on cell disruption
and glycerol leakage from Dunaliella salina


Title variants

Languages of publication



Dunaliella salina accumulates large amounts of
intracellular glycerol in response to the increases in salt
concentration, thus is a potential source for producing
fuel grade glycerol as an alternative to biodiesel-derived
crude glycerol. D. salina lacks a cell wall; therefore the
mode of harvesting Dunaliella cells is critical to avoid cell
disruption caused by extreme engineering conditions.
This study explored cell disruption and glycerol leakage
of D. salina under various centrifugal stresses during
cell harvesting. Results show a centrifugal g-force lower
than 5000 g caused little cell disruption, while a g-force
higher than 9000 g led to ~40% loss of the intact cells and
glycerol yields from the recovered algal pellets. Theoretical
calculations of the centrifugal stresses that could rupture
Dunaliella cells were in agreement with the experimental
results, indicating optimisation of centrifugation
conditions is important for recovering intact cells of
D. salina enriched in glycerol.







Physical description


24 - 7 - 2015
5 - 5 - 2015
6 - 10 - 2014


  • University
    of Greenwich, School of Science, Central Avenue Chatham Maritime,
    Kent ME4 4TB
  • University
    of Greenwich, School of Science, Central Avenue Chatham Maritime,
    Kent ME4 4TB
  • University
    of Greenwich, School of Science, Central Avenue Chatham Maritime,
    Kent ME4 4TB
  • University
    of Greenwich, School of Science, Central Avenue Chatham Maritime,
    Kent ME4 4TB
  • University
    of Greenwich, School of Science, Central Avenue Chatham Maritime,
    Kent ME4 4TB
  • University
    of Greenwich, School of Science, Central Avenue Chatham Maritime,
    Kent ME4 4TB


  • [1] Milledge J.J., Commercial application of microalgae other thanas biofuels: A brief review, Rev. Environ. Sci. Biotechnol., 2011,10, 31-41[Crossref]
  • [2] Vanthoor-Koopmans M., Wijffels R.H., Barbosa M.J., EppinkM.H.M., Biorefinery of microalgae for food and fuel, Biores.Technol., 2013, 135, 142-149
  • [3] Milledge J.J., Heaven S., Methods of energy extraction frommicroalgal biomass: A review, Rev. Environ. Sci. Biotechnol.,2014, 13, 301-320[Crossref]
  • [4] Harvey P., Abubakar A.L., Xu Y., Bailey D., Milledge J.J., Swamy R.,et al., The CO2 microalgae biorefinery: High value products fromlow value wastes using halophylic microalgae in the d-factory.Part1: Tackling cell harvesting in European Biomass Conference,Hamburg, 2014
  • [5] Ben-Amotz A., Polle J.E.W., Subba Rao D.V., The alga Dunaliella:Biodiversity, physiology, genomics and biotechnology, SciencePublishers, Enfleld NJ, 2009
  • [6] Cowan A.K., Rose P.D., Horne L.G., Dunaliella-salina - a modelsystem for studying the response of plant-cells to stress, J. Exp.Bot., 1992, 43, 1535-1547[Crossref]
  • [7] Goyal A., Osmoregulation in Dunaliella, part i: Effects ofosmotic stress on photosynthesis, dark respiration and glycerolmetabolism in Dunaliella tertiolecta and its salt-sensitive mutant(hl 25/8), Plant Physiol. Biochem., 2007, 45, 696-704[Crossref]
  • [8] Goyal A., Osmoregulation in Dunaliella, part ii: Photosynthesisand starch contribute carbon for glycerol synthesis during a saltstress in Dunaliella tertiolecta, Plant Physiol. Biochem., 2007,45, 705-710[PubMed][Crossref]
  • [9] Tan H.W., Abdul Aziz A.R., Aroua M.K., Glycerol production andits applications as a raw material: A review, Renew. Sustain.Energy Rev., 2013, 27, 118-127[Crossref]
  • [10] Harvey P.J., Psycha M., Kokossis A., Abubakar A.L., Trivedi V.,Swamy R., et al., Glycerol production by halophytic microalgae:Strategy for producing industrial quantities in saline water in20th European Biomass Conference and Exhibition, 85 - 90, 2012
  • [11] Domalski E.S., Selected values of heat of combustion and heat offormation of organic compounds containing the elements C, H,N, O, P and S, J. Phy. Chem. Ref. Data, 1972, 1, 221-277[Crossref]
  • [12] Baghel R.S., Trivedi N., Gupta V., Neori A., Chennur R.R., LaliA.M., et al., Biorefining of marine macroalgal biomass forproduction of biofuel and commodity chemicals, Green Chem.,2015,[Crossref]
  • [13] Greenwell H.C., Laurens L.M.L., Shields R.J., Lovitt R.W., FlynnK.J., Placing microalgae on the biofuels priority list: A reviewof the technological challenges, J. R. Soc. Interface, 2010, 7,703-726[Crossref]
  • [14] Coons J.E., Kalb D.M., Dale T., Marrone B.L., Getting to low-costalgal biofuels: A monograph on conventional and cutting-edgeharvesting and extraction technologies, Algal Res., 2014, 6, PartB, 250-270[Crossref]
  • [15] Mata T.M., Martins A.A., Caetano N.S., Microalgae for biodieselproduction and other applications: A review, Renew. Sust. Energ.Rev., 2010, 14, 217-232[Crossref]
  • [16] Molina Grima E., Belarbi E.-H., Acien-Fernandez F.G., Robles-Medina A., Yusuf C., Recovery of microalgal biomass andmetabolites: Process options and economics, Biotechnol. Adv.,2003, 20, 491-515[Crossref][PubMed]
  • [17] Verma N.M., Mehrotra S., Shukla A., Mishra B.N., Prospective ofbiodiesel production utilizing microalgae as the cell factories:A comprehensive discussion, Afr. J. Biotechnol., 2010, 9,1402-1411
  • [18] Milledge J.J., Heaven S., A review of the harvesting of micro-algaefor biofuel production, Rev. Environ. Sci. Biotech., 2013, 12,165-178[Crossref]
  • [19] Chengala A.A., Hondzo M., Troolin D., Lefebvre P.A., Kineticresponses of Dunaliella in moving fluids, Biotech. Bioeng., 2010,107, 65-75[Crossref]
  • [20] Zamalloa C., Vulsteke E., Albrecht J., Verstraete W., The technoeconomicpotential of renewable energy through the anaerobicdigestion of microalgae, Biores. Technol., 2011, 102, 1149-1158[Crossref]
  • [21] Zhu L.D., Hiltunen E., Antila E., Zhong J.J., Yuan Z.H., WangZ.M., Microalgal biofuels: Flexible bioenergies for sustainabledevelopment, Renew. Sust. Energ. Rev., 2014, 30, 1035-1046[Crossref]
  • [22] Borowitzka M.A., Culturing of microalgae in outdoor ponds, inAnderse R.A. (Ed.), Algal culturing techniques, Elsevier, London,2005
  • [23] Peeler T.C., Stephenson M.B., Einspahr K.J., Thompson G.A.,Lipid characterization of an enriched plasma-membrane fractionof Dunaliella salina grown in media of varying salinity, PlantPhysiol., 1989, 89, 970-976[PubMed][Crossref]
  • [24] Ben-Amotz A., Bio-fuel and CO2 capture by algae, NASA, 2008
  • [25] Ben-Amotz A., Avron M., The biotechnology of mass culturingof Dunaliella for products of commercial interest, eds CresswellR.C., Ress T.A.V., Shah N., Longman Scientifc and TechnicalPress, London, 90-114, 1989
  • [26] Perry R.H., Chilton C.H., Chemical engineers’ handbook, McGrawHill, Tokyo, Fifth Ed, 1973
  • [27] Milledge J.J., Heaven S., Disc stack centrifugation separationand cell disruption of microalgae: A technical note, Environ. Nat.Resour. Res., 2011, 1, 17-24
  • [28] Mannweiler K., Hoare M., The scale-down of an industrial diskstack centrifuge, Bioprocess Eng., 1992, 8, 19-25[Crossref]
  • [29] Axelsson H., Recent trends in disc bowl centrifuge development,Filtr. Sep., 2000, 37, 20-23
  • [30] Silva H.J., Cortifas T., Ertola R.J., Effect of hydrodynamic stress onDunaliella growth, J. Chem. Technol. Biotechnol., 1987, 40, 41-49[Crossref]
  • [31] Boychyn M., Yim S.S.S., Bulmer M., More J., Bracewell D.G.,Hoare M., Performance prediction of industrial centrifuges usingscale-down models, Bioprocess Biosyst. Eng., 2004, 26, 385-391
  • [32] Garcia Camacho F., Gallardo Rodriguez J.J., Sanchez Miron A.,Belarbi E.H., Chisti Y., Molina Grima E., Photobioreactor scale-upfor a shear-sensitive dinoflagellate microalga, Process Biochem.,2011, 46, 936-944[Crossref]
  • [33] Johnson M.K., Johnson E.J., MacElroy R.D., Speer H.L., BruffB.S., Effects of salts on the halophilic alga Dunaliella viridis, J.Bacteriol., 1968, 95, 1461-1468
  • [34] Borowitzka M.A., Algal growth media and sources of cultures,Microalgal biotechnology, eds Borowitzka L.J., Borowitzka M.A.,Cambridge University Press, Cambridge, 1988
  • [35] Chen H., Lao Y.-M., Jiang J.-G., Effects of salinities on thegene expression of a (nad+)-dependent glycerol-3-phosphatedehydrogenase in Dunaliella salina, Sci. Total Environ., 2011,409, 1291-1297
  • [36] Lamers P.P., Metabolomics of carotenoids accumulation inDunaliella salina, PhD, Wageningen University, 2011
  • [37] Lin H.X., Fang L., Low C.S., Chow Y., Lee Y.K., Occurrence ofglycerol uptake in Dunaliella tertiolecta under hyperosmoticstress, FEBS J., 2013, 280, 1064-1072
  • [38] Chow Y.Y., Goh S.J., Su Z., Ng D.H., Lim C.Y., Lim N.Y., et al.,Continual production of glycerol from carbon dioxide byDunaliella tertiolecta, Bioresour. Technol., 2013, 136, 550-555
  • [39] Boal D.H., Mechanics of the cell, Cambridge University Press,Cambridge ; New York, 2nd Ed, 2012
  • [40] Preston G.M., Carroll T.P., Guggino W.B., Agre P., Appearance ofwater channels in xenopus oocytes expressing red cell chip28protein, Science, 1992, 256, 385-387
  • [41] Oliva R., Calamita G., Thornton J.M., Pellegrini-Calace M., Electrostaticsof aquaporin and aquaglyceroporin channels correlateswith their transport selectivity, Proc. Nat. Acad. Sci., 2010, 107,4135-4140
  • [42] Erickson H.P., Size and shape of protein molecules at thenanometer level determined by sedimentation, gel filtration,and electron microscopy, Biological Procedures Online, 2009, 11,32-51[PubMed]
  • [43] Carpita N.C., Tensile-strength of cell-walls of living cells, PlantPhysiol., 1985, 79, 485-488[Crossref][PubMed]
  • [44] Hibbeler R.C., Fan S.C., Mechanics of materials, Prentice Hall,Singapore, 8th ed. in SI units Ed, 2012
  • [45] Peperzak L., Colijn F., Koeman R., Gieskes W.W.C., JoordensJ.C.A., Phytoplankton sinking rates in the rhine region offreshwater influence, J. Plankton Res., 2003, 25, 365-383[Crossref]
  • [46] Smayda T.J., The suspension and sinking of phytoplankton inthe sea, in Barnes H. (Ed.), Oceanography and marine biologyannual review, George Allen & Unwin, London, Vol 8, 353-414,1970
  • [47] Sournia A. ed, Phytoplankton manual, UNESCO, Paris, 1978
  • [48] Kestin J., Sokolov M., Wakeham W.A., Viscosity of liquid water inthe range -8 to 150 °C, J. Phys. Chem. Ref. Data, 1978, 7, 941-948
  • [49] Kromkamp J., Walsby A.E., A computer-model of buoyancy andvertical migration in cyanobacteria, J. Plankton Res., 1990, 12,161-183[Crossref]
  • [50] Van Lerland E.T., Peperzak L., Separation of marine seston anddensity determination of marine diatoms by density gradientcentrifugation, J. Plankton Res., 1984, 6, 29-44[Crossref]
  • [51] Millero F.J., Lepple F.K., The density and expansibility of artificialseawater solutions from 0 to 40°C and 0 to 21 chlorinity, MarineChem., 1973, 1, 89-104
  • [52] El-Dessouky H.T., Ettouney H.M., Fundamentals of salt waterdesalination Elsevier, Amsterdam, 2002
  • [53] Harrison R.D., Book of data, Nuffield Advanced Science, 1972
  • [54] Lowe S.A., Omission of critical Reynolds number for openchannel flows in many textbooks, J. Professional Iss. Eng. Edu.Practice, 2003, 129, 58-59
  • [55] Coulson J.M., Richardson J.F., Coulson & Richardson’s chemicalengineering . Fluid flow, heat transfer and mass transfer,Elsevier, Oxford, 6 Ed, 1999

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.