PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |
Article title

Feasibility of lipid mechanical extraction
from viable Monoraphidium minutum

Content
Title variants
Languages of publication
EN
Abstracts
EN
Background. Mechanical stress was
investigated as a mean to harvest microalgal lipids without
affecting algal cells’ viability. Monoraphidium minutum
was cultivated in laboratory-scale photobioreactors and
suspension cultures were submitted to mechanical stress
to compare a cyclone, a centrifuge and a homogenizer.
Lipid content within the extracellular medium was
analyzed prior to and after treatment, and the amount
of released lipids was quantified. Algal cell viability
was also evaluated before and after treatment. Results.
After mechanical-stress treatments, 7.0 to 12.7% of the
intracellular lipids of Monoraphidium minutum were
released and found in the extracellular medium, while
recovered algal cells presented low levels of disruption
after treatments. Conclusions. To the best of our
knowledge, this is the first proof-of-concept demonstration
on the use of mechanical stress for lipid extraction from
viable microalgae. Certain level of centrifugation proved
to make algae release around 10% of their lipids to the
extracellular medium. This mostly exploratory work calls
for deeper investigation, paving the way for a biofuel
production based on continuous lipid recovery and
microalgae reuses.
Publisher

Year
Volume
1
Issue
1
Physical description
Dates
accepted
25 - 7 - 2014
received
27 - 12 - 2013
online
3 - 4 - 2015
Contributors
  • Canada Research Chair
    in Applied Metabolic Engineering. Department of Chemical
    Engineering, École Polytechnique, CP 6079 Succ. Centre-Ville,
    Montréal QC, Canada H3C 3A7
  • Total SA, 2 place de la Coupole,
    La Défense 6, 92400 Courbevoie France
  • Total SA, 2 place de la Coupole,
    La Défense 6, 92400 Courbevoie France
  • Canada Research Chair
    in Applied Metabolic Engineering. Department of Chemical
    Engineering, École Polytechnique, CP 6079 Succ. Centre-Ville,
    Montréal QC, Canada H3C 3A7
References
  • [1] Cockerill S., Martin C., Are biofuels sustainable? TheEU perspective, Biotechnol. Biofuels, 2008, 1, 9,doi:10.1186/1754-6834-1-9[WoS][Crossref]
  • [2] Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J.,Lea-Smith D.J., Smith A.G., Biodiesel from algae: challengesand prospects, Curr. Opin. Biotechnol., 2010, 21, 277–286[PubMed][WoS][Crossref]
  • [3] Chisti Y., Biodiesel from microalgae, Biotechnol. Adv., 2007, 25,294–306[PubMed][Crossref]
  • [4] Brown L.M., Uptake of carbon dioxide from flue gas bymicroalgae, Energy Conv. Manag., 1996, 37, 1363-1367[Crossref]
  • [5] Pittman J., Dean A., Osundeko O., The potential of sustainablealgal biofuel production using wastewater resources, Biores.Technol., 2011, 102, 17–25[Crossref]
  • [6] Lardon L., Hélias A., Sialve B., Steyer J.P., Bernard O., Life-CycleAssessment of Biodiesel Production from Microalgae, Env. Sci.Technol., 2009, 43 (17), 6475–6481[Crossref]
  • [7] Gudin C, Therpenier C., Bioconversion of solar energy intoorganic chemicals by microalgae, Adv. Biotechnol. Processes,1986, 6, 73–110
  • [8] Grima E.M., Belarbi E.H., Acién Fernández F.G., Robles MedinaA., Chisti Y., Recovery of microalgal biomass and metabolites:process options and economics, Biotechnol. Adv., 2003, 20,491-515[Crossref]
  • [9] Nagle N., Lemke P. Production of methyl ester fuel frommicroalgae, App. Biochem. Biotechnol., 1990, 24, 355-361[Crossref]
  • [10] Yang J., Xu M., Zhang X., Hu Q., Sommerfeld M., Chen Y.,Life-cycle analysis on biodiesel production from microalgae:Water footprint and nutrients balance, Biores. Technol., 2011,102,159–165[Crossref]
  • [11] Haigh W.G., Method for purifying beta-carotene – EuropeanPatent 0666845, 2000
  • [12] Mendes-Pinto M.M., Raposo1 M.F.J., Bowen J., Young A.J.,Morais R., Evaluation of different cell disruption processeson encysted cells of Haematococcus pluvialis: effects onastaxanthin recovery and implications for bioavailability, J.App. Phycol., 2001, 13, 19-24
  • [13] Lee J.Y., Yoo C., Jun S.Y., Ahn C.Y., Oh H.M., Comparison ofseveral methods for effective lipid extraction from microalgae,Biores. Technol., 2010, 101, S75–S77[Crossref]
  • [14] Cadoret J.P., Bernard O., Lipid biofuel production withmicroalgae: potential and challenge. J. Soc. Biol, 2008, 202(3),201-11
  • [15] Solomon, J.A., Hand, R.E., Mann, R.C., Ultrastructural and FlowCytometric Analyses of Lipid Accumulation in Microalgae: ASubcontract Report. Solar Energy Research Institute SERI/STR-231-3089, 1986
  • [16] Chen P., Min M., Chen Y., Wang L., Li Y., Chen Q., et al., Reviewof the biological and engineering aspects of algae to fuelsapproach, Int. J. Agr. Biol. Engin., 2009, 2, 4
  • [17] Sheehan J., Dunahay T., Benemann J., Roessler P., A Look Backat the U.S. Department of Energy’s Aquatic Species Program –Biodiesel from Algae, 1998
  • [18] Barclay, W.R., Terry, K.L., Nagle, N.J., Weissman, J.C., Goebel,R.P., Potential of new strains of marine and inland salineadaptedmicroalgae for aquaculture. J. World Aquacult. Soc.,1987, 18, 218-228[Crossref]
  • [19] Kraipech W., Chen W., Dyakowski T., Nowakowski A.,The performance of the empirical models on industrialhydrocyclone design, Int. J. Mineral Proc., 2006, 80, 100– 115
  • [20] Cilliers J.J., Harrison S.T.L., The application ofmini-hydrocyclones in the concentration of yeast suspensions,Chem. Eng. J., 1997, 65, 21-26[Crossref]
  • [21] Habibian M., Pazouki M., Ghanaie H., Abbaspour-Sani K.,Application of hydrocyclone for removal of yeasts from alcoholfermentations broth, Chem. Eng. J., 2008, 138, 30-34
  • [22] Elsayed E.A. Medronho R.A., Wagner R., Deckwer W.-D., Useof Hydrocyclones for Mammalian Cell Retention: SeparationEfficiency and Cell Viability (Part 1), Animal Cell Technol. MeetsGenom., 2006, 2, 679-682[Crossref]
  • [23] Yamamoto K., Shimizu N., Obi S., Kumagaya S., Taketani Y.,Kamiya A., Ando J., Involvement of cell surface ATP synthase inflow-induced ATP release by vascular endothelial cells, AJP –Heart Circulat. Physiol., 2007, 293, 1646-1653
  • [24] Heasman M., Diemar J., O’Connor W., Sushames T., Foulkes L.,Development of extended shelf-life microalgae concentratediets harvested by centrifugation for bivalve molluscs,Aquacult. Res., 2000, 31, 637-659[Crossref]
  • [25] Harun R., Singh M., Forde G.M., Danquah M.K., Bioprocessengineering of microalgae to produce a variety of consumerproducts, Renew. Sustain. En. Rev., 2010, 14, 1037–1047[Crossref][WoS]
  • [26] Hopkins T.R., Physical and chemical cell disruption for therecovery of intracellular proteins, Bioproc. Technol., 1991, 12,57-83
  • [27] Frangos J.A., McIntire L.V., Eskin S.G., Shear Stress InducedStimulation of Mammalian Cell Metabolism, Biotechnol.Bioeng., 1987, 32, 1053-1060[Crossref]
  • [28] Wylock C., Larcy A., Colinet P., Cartage T., Haut B., Studyof the CO2 Transfer Rate in a Reacting Flow for the RefinedSodium Bicarbonate Production Process; COMSOL Conference,Hannover, 2008
  • [29] Bligh E.G., Dyer W.J., A rapid method of total lipid extractionand purification, Can. J. Biochem. Physiol., 1959, 37, 911-917[Crossref]
  • [30] Drochioiu G., Turbidimetric lipid assay in seed flours, J. FoodLip., 2005, 12, 12-22[Crossref]
  • [31] Del Pilar M. Saavedra S., The effect of cold storage on cellviability and composition of two benthic diatoms, Aquacult.Eng., 2006, 34, 131–136[Crossref]
  • [32] Bester E., Wolfaardt G., Joubert L., Gamy K., Saftic S.,Planktonic-Cell Yield of a Pseudomonad Biofilm, App. Environ.Microbiol., 2005, 71, 7792-7798[Crossref]
  • [33] Rodriguez-Ruiz J., Belarbi E, García Sanchez J.L., Alonso D.L.,Rapid simultaneous lipid extraction and transesterification forfatty acid analyses, Biotechnol. Techniq., 1998, 12, 689-691
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_micbi-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.