Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Mesoporous alumina as a biomaterial for
biomedical applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
Porous anodic alumina (PAA) is a biomaterial
based on a cost-effective electrochemical anodization of
pure aluminum with unique geometrical properties, i.e.,
self-ordering hexagonal pore distribution, tunable pore diameters
and interpore distances, and uniformity of the
pores in the vertical direction (nanochannels). These remarkable
properties have found important applications
in several fields such as energy storage, optics, photonics,
magnetism, catalysis and, in particular, in the
biomedicine field. In this work, we review the current
state of research and key issues on cell culture and implants,
drug delivery systems with complex release profiles
and specific action, and high efficiency and sensitivity
biosensors with different biosensing mechanisms, all
of them based on PAA. The biocompatibility, morphology
of the surface, nanoestructural engineering in-depth, surface
functionalization and coatings are discussed and analyzed
in detail.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

received
23 - 6 - 2015
online
29 - 8 - 2015
accepted
6 - 8 - 2015

Contributors

  • Departament
    d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat
    Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
  • Departament
    d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat
    Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
  • Departament
    d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat
    Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
  • Departament
    d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat
    Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain

References

  • [1] C. J. Ingham, J. ter Maat, W. M. de Vos, Where Bio Meets Nano:TheMany Uses for Nanoporous AluminumOxide in Biotechnology,Biotechnology Advances 30, 2012, 1089.[Crossref]
  • [2] A. M.Md Jani, D. Losic, N. H. Voelcker, Nanoporous Anodic AluminiumOxide:Advances in Surface Engineering and EmergingApplications, Prog. Mater. Sci. 58, 2013, 636.
  • [3] G. E. J. Poinern, N. Ali, D. Fawcett, Progress in Nano-EngineeredAnodic AluminumOxide Membrane Development,Materials 4,2010, 487.
  • [4] E. Gultepe, D. Nagesha, S. Sridhar, M. Amiji, Nanoporous InorganicMembranes or Coatings for Sustained Drug Delivery inImplantable Devices, Adv. Drug Deliv. Rev. 62, 2010, 305.[Crossref]
  • [5] D. Brüggemann, Nanoporous Aluminium Oxide Membranesas Cell Interfaces, Journal of Nanomaterials 2013, 2013, ID460870.
  • [6] S. P. Adiga, C. Jin, L. A. Curtiss, N. A. Monteiro-Riviere, R. J.Narayan, Nanoporous Membranes for Medical and BiologicalApplications, Wiley Interdisciplinary Reviews: Nanomedicineand Nanobiotechnology 1, 2009, 568.
  • [7] A. Santos, M. Sinn Aw, M. Bariana, T. Kumeria, Y. Wang, D.Losic, Drug-Releasing Implants: Current Progress, Challengesand Perspectives, J. Mater. Chem. B 2, 2014, 6157.[Crossref]
  • [8] K. E. La Flamme, K. C. Popat, L. Leoni, E. Markiewicz, T. J. LaTempa, B. B. Roman, C. Grimes, T. A. Desai, Biocompatibilityof Nanoporous Alumina Membranes for Immunoisolation, Biomaterials28, 2007, 2638.[Crossref]
  • [9] K. H. Lau, A. Yoo, S. P. Wang, Aluminum Stimulates the Proliferationand Differentiation of Osteoblasts in Vitro by a MechanismThat Is Different from Fluoride, Mol. Cell. Biochem. 105,1991, 93.
  • [10] L. D. Quarles, S. A. Castillo, M. K. Drezner, Aluminium InducedReplication of Osteoblast Precursors: A Potential MechanismUnderlying Neo-Osteogenesis, J. Bone Min. Res 4, 1989, S131.
  • [11] T. R. Jones, D. L. Antonetti, T.W. Reid, AluminumIons StimulateMitosis in Murine Cells in Tissue Culture, J. Cell. Biochem. 30,1986, 31.[Crossref]
  • [12] M. Karlsson, E. Pålsgård, P. R. Wilshaw, L. Di Silvio, Initial inVitro Interaction of Osteoblasts with Nano-Porous Alumina,Biomaterials 24, 2003, 3039.[Crossref]
  • [13] E. E. L. Swan, K. C. Popat, C. A. Grimes, T. A. Desai, Fabricationand Evaluation of Nanoporous Alumina Membranes forOsteoblast Culture, J. Biomed. Mater. Res. - Part A 72, 2005,288.[Crossref]
  • [14] K. C. Popat, E. E. LearySwan, V.Mukhatyar, K. I. Chatvanichkul,G. K. Mor, C. A. Grimes, T. A. Desai, Influence of NanoporousAlumina Membranes on Long-Term Osteoblast Response, Biomaterials26, 2005, 4516.[Crossref]
  • [15] Y. Song, Y. Ju, Y. Morita, G. Song, Effect of the Nanostructure ofPorous Alumina on Growth Behavior of MG63 Osteoblast-likeCells, J. Biosci. Bioeng. 116, 2013. 509.
  • [16] S. Ni, T. Chen, T. J. Webster, Understanding Improved OsteoblastBehavior on Select Nanoporous Anodic Alumina, Int.J. Nanomedicine 9, 2014, 3325.[Crossref]
  • [17] Y. Song, Y. Ju, G. Song, Y. Morita, In Vitro Proliferation andOsteogenic Differentiation of Mesenchymal Stem Cells onNanoporous Alumina, Int. J. Nanomedicine 8, 2013, 2745.
  • [18] S. Pujari-Palmer, T. Lind, W. Xia, L. Tang, M. K. Ott, ControllingOsteogenic Differentiation through Nanoporous Alumina,J. Biomater. Nanobiotechnol. 5, 2014, 98.[Crossref]
  • [19] S. Pujari, A. Hoess, J. Shen, A. Thormann, A. Heilmann, L. Tang,M. Karlsson-Ott, Effects of Nanoporous Alumina on InflammatoryCell Response, J. Biomed. Mater. Res. - Part A 102, 2013,3773.
  • [20] N. Ferraz, A. Hoess, A. Thormann, A. Heilmann, J. Shen, L.Tang, M. K. Ott, Role of Alumina Nanoporosity in Acute Cell Response,J. Nanosci. Nanotechnol. 11, 2011, 6698.
  • [21] A. Hoess, A. Thormann, A. Friedmann, A. Heilmann, Self-Supporting Nanoporous Alumina Membranes as Substratesfor Hepatic Cell Cultures, J. Biomed. Mater. Res. - Part A 100,2012, 2230.
  • [22] C. Toccafondi, S. Thorat, R. La Rocca, A. Scarpellini, M.Salerno, S. Dante, G. Das, Multifunctional Substrates of ThinPorous Alumina for Cell Biosensors, J. Mater. Science: Materialsin Medicine 25, 2014, 2411.[Crossref]
  • [23] M. Salerno, F. Caneva-Soumetz, L. Pastorino, N. Patra, A. Diaspro,C. Ruggiero, Adhesion and Proliferation of OsteoblastlikeCells on Anodic Porous Alumina Substrates with DifferentMorphology, IEEE Trans. Nanobioscience 12, 2013, 106.[Crossref]
  • [24] J. Hu, J. H. Tian, J. Shi, F. Zhang, D. L. He, L. Liu, D. J. Jung, J. B.Bai, Y. Chen, Cell Culture on AAO Nanoporous Substrates withand without Geometry Constrains, Microelectronic Engineering88, 2011, 1714.[Crossref]
  • [25] S. H. Chung, S. J. Son, J. Min, The Nanostructure Effect onthe Adhesion and Growth Rates of Epithelial Cells with Well-Defined Nanoporous Alumina Substrates, Nanotechnology 21,2010, 125104.[Crossref]
  • [26] S. Thakur, S. Massou, A. M. Benoliel, P. Bongrand, M. Hanbucken,K. Sengupta, Depth Matters: Cells Grown on Nano-Porous Anodic Alumina Respond to Pore Depth, Nanotechnology23, 2012, 255101.[Crossref]
  • [27] N. Ferraz, J. Hong, M. Santin, M. Karlsson Ott, Nanoporosityof Alumina Surfaces Induces Different Patterns of Activationin Adhering Monocytes/macrophages, Int. J. Biomater. 2010,2010, 402715.
  • [28] N. Ferraz, J. Carlsson, J. Hong, M. K. Ott, Influence of Nanoporesizeon Platelet Adhesion and Activation, J. Mater. Sci. Mater.Med. 19, 2008, 3115.[Crossref]
  • [29] N. Ferraz, J. Hong, M. Karlsson Ott, Procoagulant Behavior andPlatelet Microparticle Generation on Nanoporous Alumina, J.Biomater. Appl. 24, 2010, 675.[Crossref]
  • [30] A. Hoess, A. Thormann, A. Friedmann, H. Aurich, A. Heilmann,Co-Cultures of Primary Cells on Self-Supporting NanoporousAlumina Membranes, Adv. Eng. Mater. 12, 2010, 269.
  • [31] E. E. Leary Swan, K. C. Popat, T. A. Desai, Peptide-ImmobilizedNanoporous Alumina Membranes for Enhanced Osteoblast Adhesion,Biomaterials 26, 2005, 1969.[Crossref]
  • [32] X. Li, S. Ni, T. J. Webster, In Vitro Apatite Formation on PorousAnodic Alumina Induced by a Phosphorylation Treatment, J.Biomater. Appl. 29, 2014, 321.[Crossref]
  • [33] V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch,D. Kaplan, Bone Morphogenetic Protein-2 DecoratedSilk Fibroin Films Induce Osteogenic Differentiation of HumanBone Marrow Stromal Cells, J Biomed Mater Res A 71A, 2004,528.
  • [34] D. S. W. Benoit, S. D. Collins, K. S. Anseth, MultifunctionalHydrogels That Promote Osteogenic hMSC Differentiationthrough Stimulation and Sequestering of BMP2, Adv. Funct.Mater. 17, 2007, 2085.[Crossref]
  • [35] Y. Song, Y. Ju, Y. Morita, B. Xu, G. Song, Surface Functionalizationof Nanoporous Alumina with Bone Morphogenetic Protein2 for Inducing Osteogenic Differentiation of MesenchymalStem Cells,Mater. Sci. Eng. C.Mater. Biol. Appl. 37, 2014, 120.[Crossref]
  • [36] S.-Z. Chu, K. Wada, S. Inoue, H. Segawa, Direct Growth ofHighly Ordered Crystalline Zirconia Nanowire Arrays with HighAspect Ratios on Glass by a Tailored Anodization, J. Electrochem.Soc. 158, 2011, C148.[Crossref]
  • [37] J. Oh, Y. C. Shin, C. V. Thompson, A Tungsten Interlayer Processfor Fabrication of Through-Pore AAO Scaffolds on GoldSubstrates, J. Electrochem. Soc. 158, 2011, K11.[Crossref]
  • [38] J. Oh, C. V. Thompson, Selective Barrier Perforation in PorousAlumina Anodized on Substrates, Adv. Mater. 20, 2008, 1368.
  • [39] E. P. Briggs, A. R. Walpole, P. R.; Wilshaw, M. Karlsson, E. Pålsgård,Formation of Highly Adherent Nano-Porous Alumina onTi-Based Substrates: A Novel Bone Implant Coating, J. Mater.Sci. Mater. Med. 15, 2004, 1021.[Crossref]
  • [40] H. Wieneke, O. Dirsch, T. Sawitowski, Y. L. Gu, H. Brauer, U.Dahmen, A. Fischer, S. Wnendt, R. Erbel, Synergistic Effectsof a Novel Nanoporous Stent Coating and Tacrolimus on IntimaProliferation in Rabbits, Catheter. Cardiovasc. Interv. 60,2003, 399.[Crossref]
  • [41] A. R. Walpole, Z. Xia, C. W. Wilson, J. T. Trifltt, P. R. Wilshaw,Novel Nano-Porous Alumina Biomaterial with Potential forLoading with Bioactive Materials, J. Biomed. Mater. Res. - PartA 90, 2009, 46.[Crossref]
  • [42] S. Rahman, G. J. Atkins, D. M. Findlay, D. Losic, NanoengineeredDrug Releasing Aluminium Wire Implants: A ModelStudy for Localized Bone Therapy, J. Mater. Chem. B 3, 2015,3288.[Crossref]
  • [43] K. Anselme, L. Ploux, A. Ponche, Cell/Material Interfaces: Influenceof Surface Chemistry and Surface Topography on CellAdhesion, J. Adhes. Sci. Technol. 24, 2010, 831.
  • [44] R. Urteaga, L. N. Acquaroli, R. R. Koropecki, A. Santos, M. Alba,J. Pallarès, L. F. Marsal, C. L. A. Berli, Optofluidic Characterizationof Nanoporous Membranes, Langmuir 29, 2013, 2784.[Crossref]
  • [45] A. Santos, V. S. Balderrama, M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, L. F. Marsal, Nanoporous Anodic AluminaBarcodes: Toward Smart Optical Biosensors, Adv. Mater. 24,2012, 1050.
  • [46] H.-J. Kang, D. J. Kim, S.-J. Park, J.-B. Yoo, Y. S. Ryu, ControlledDrug Release Using Nanoporous Anodic Aluminum Oxide onStent, Thin Solid Films 515, 2007, 5184.
  • [47] M. H. El-Dakdouki, E. Puré, X. Huang, Development of DrugLoaded Nanoparticles for Tumour Targeting. Part 1: Synthesis, Characterization, and Biological Evaluation in 2D Cell Cultures,Nanoscale 5, 2013, 3895.[Crossref]
  • [48] Y. J. Lu, K. C. Wei, C. C. M. Ma, S. Y. Yang, J. P. Chen,. DualTargeted Delivery of Doxorubicin to Cancer Cells Using Folate-Conjugated Magnetic Multi-Walled Carbon Nanotubes, ColloidsSurfaces B Biointerfaces 89, 2012, 1.[Crossref]
  • [49] A. B. Foraker, R. J. Walczak, M. H. Cohen, T. A. Boiarski, C.F. Grove, P. W. Swaan, Microfabricated Porous Silicon ParticlesEnhance Paracellular Delivery of Insulin across IntestinalCaco-2 Cell Monolayers, Pharm. Res. 20, 2003, 110.
  • [50] A. A. Ayon, M. Cantu, K. Chava, C. M. Agrawal, M. D. Feldman,D. Johnson, D. Patel, D. Marton, E. Shi, Drug Loading ofNanoporous TiO2 Films. Biomed. Mater. 1, 2006, L11.[Crossref]
  • [51] M. Baranowska, A. J. Slota, P. J. Eravuchira, G. Macias, E. Xifré-Pérez, J. Pallares, J. Ferré-Borrull, L. F. Marsal, Protein Attachmentto Nanoporous Anodic Alumina for Biotechnological Applications:Influence of Pore Size, Protein Size and FunctionalizationPath, Colloids Surfaces B Biointerfaces 122, 2014, 375.[Crossref]
  • [52] C. S. Law, A. Santos, T. Kumeria, D. Losic, EngineeredTherapeutic-Releasing Nanoporous Anodic Alumina-Aluminum Wires with Extended Release of Therapeutics,ACS Appl. Mater. Interfaces 7, 2015, 3846.[Crossref]
  • [53] S. Kapoor, R. Hegde, A. J. Bhattacharyya, Influence of SurfaceChemistry of Mesoporous AluminawithWide Pore Distributionon Controlled Drug Release, J. Control. Release 140, 2009, 34.[Crossref]
  • [54] S. Simovic, D. Losic, K. Vasilev, Controlled Drug Release fromPorous Materials by Plasma Polymer Deposition, Chem. Commun.46, 2010, 1317.[Crossref]
  • [55] M. S. Aw, S. Simovic, J. Addai-Mensah, D. Losic, Polymeric Micellesin Porous and Nanotubular Implants as a New Systemfor Extended Delivery of Poorly Soluble Drugs, J. Mater. Chem.21, 2011, 7082.[Crossref]
  • [56] M. S. Aw, M. Kurian, D. Losic, Non-Eroding Drug-Releasing Implantswith Ordered Nanoporous and Nanotubular Structures:Concepts for Controlling Drug Release, Biomater. Sci. 2, 2014,10.
  • [57] G. Jeon, S. Y. Yang, J. Byun, J. K. Kim, Electrically ActuatableSmart Nanoporous Membrane for Pulsatile Drug Release,Nano Lett. 11, 2011, 1284.[Crossref]
  • [58] S. D. Alvarez, C. Li, C. E. Chiang, I. K. Schuller, M. J. Sailor,A Label-Free Porous Alumina Interferometric Immunosensor,ACS Nano 3, 2009, 3301.[Crossref]
  • [59] Y. Wang, A. Santos, G. Kaur, A. Evdokiou, D. Losic, StructurallyEngineered Anodic Alumina Nanotubes as Nano-Carriers forDelivery of Anticancer Therapeutics, Biomaterials 35, 2014,5517.[Crossref]
  • [60] T. Kumeria, K. Gulati, A. Santos, D. Losic, Real-Time and in SituDrug Release Monitoring from Nanoporous Implants under DynamicFlow Conditions by Reflectometric Interference Spectroscopy,ACS Appl. Mater. Interfaces 5, 2013, 5436.[Crossref]
  • [61] X. Wu, S. Xiong, J. Guo, L. Wang, C. Hua, Y. Hou, P. K. Chu,Ultrathin Amorphous Alumina Nanoparticles with Quantum-Confined Oxygen-Vacancy-Induced Blue Photoluminescenceas Fluorescent Biological Labels, J. Phys. Chem. C 116, 2012,2356.[Crossref]
  • [62] Y. Wang, A. Santos, A. Evdokiou, D. Losic, Rational Design ofUltra-Short Anodic Alumina Nanotubes by Short-Time PulseAnodization, Electrochimica Acta 154, 2015, 379.[Crossref]
  • [63] W. Lee, R. Scholz, U. Gösele, A Continuous Process for StructurallyWell-Defined Al2O3 Nanotubes Based on Pulse Anodizationof Aluminum, Nano Lett. 8, 2008, 2155.[Crossref]
  • [64] R. Poplausks, U.Malinovskis, J. Andzane, J. Svirksts, A. Viksna,I. Muiznieks, D. Erts, Electrochemically Etched Sharp AluminiumProbes with Nanoporous Aluminium Oxide Coatings:Demonstration of Addressed DNA Delivery, RSC Adv. 4, 2014,48480.
  • [65] D. Gong, V. Yadavalli, M. Paulose, M. Pishko, C. A. Grimes,Controlled Molecular Release Using Nanoporous Alumina Capsules,Biomed. Microdevices 5, 2003, 75.[Crossref]
  • [66] S. K. Das, S. Kapoor, H. Yamada, A. J. Bhattacharyya, Effects ofSurface Acidity and Pore Size of Mesoporous Alumina on Degreeof Loading and Controlled Release of Ibuprofen, MicroporousMesoporous Mater. 118, 2009, 267.
  • [67] D. Carriazo, M. del Arco, C. Martín, C. Ramos, V. Rives, Influenceof the Inorganic Matrix Nature on the Sustained Releaseof Naproxen, Microporous MesoporousMater. 130, 2010, 229.[Crossref]
  • [68] K. A. Noh, New Nano-Platform for Drug Release via NanotubularAluminum Oxide, J. Biomater. Nanobiotechnol. 2, 2011,226.[Crossref]
  • [69] K. E. Orosz, S. Gupta, M. Hassink, M. Abdel-Rahman, L.Moldovan, F. H. Davidorf, N. I.Moldovan, Delivery of Antiangiogenicand Antioxidant Drugs of Ophthalmic Interest through aNanoporous Inorganic Filter, Mol. Vis. 10, 2004, 555.
  • [70] A. Santos, T. Kumeria, D. Losic, Nanoporous Anodic Alumina:A Versatile Platform for Optical Biosensors, Materials 7, 2014,4297.[Crossref]
  • [71] T. Kumeria, A. Santos, D. Losic, Nanoporous Anodic AluminaPlatforms: Engineered Surface Chemistry and Structure forOptical Sensing Applications, Sensors 14, 2014, 11878.[Crossref]
  • [72] A. Walcarius, S. D. Minteer, J. Wang, Y. Lin, A. Merkoçi, Nanomaterialsfor Bio-Functionalized Electrodes: Recent Trends, J.Mater. Chem. B 1, 2013, 4878.[Crossref]
  • [73] J. Ferré-Borrull, J. Pallarès, G. Macías, L. F. Marsal, NanostructuralEngineering of Nanoporous Anodic Alumina for BiosensingApplications, Materials 7, 2014, 5225.[Crossref]
  • [74] S. Van Gils, P. Mast, E. Stijns, H. Terryn, Colour Properties ofBarrier AnodicOxide Films on Aluminiumand TitaniumStudiedwith Total Reflectance and Spectroscopic Ellipsometry, Surf.Coatings Technol. 185, 2004, 303.[Crossref]
  • [75] G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, G. G. Siu, StrongBlue Emission from Anodic Alumina Membranes with OrderedNanopore Array, J. Appl. Phys. 93, 2003, 582.[Crossref]
  • [76] I. Maksymov, J. Ferré-Borrull, J. Pallarčs, L. F. Marsal, PhotonicStop Bands in Quasi-Random Nanoporous Anodic AluminaStructures, Photonics Nanostructures - Fundam. Appl.10, 2012, 459.
  • [77] J. Ferré-Borrull, M. Rahman, J. Pallarčs, L. F. Marsal, TuningNanoporous Anodic Alumina Distributed-Bragg Reflectorswiththe Number of Anodization Cycles and the Anodization Temperature,Nanoscale Res. Lett. 9, 2014, 416.
  • [78] B. Wang, G. T. Fei, M. Wang, M. G. Kong, L. D Zhang, Preparationof Photonic Crystals Made of Air Pores in Anodic Alumina,Nanotechnology 18, 2007, 365601.[Crossref]
  • [79] H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Madeby a Two-Step Replication of Honeycomb Structures of AnodicAlumina, Science 268, 1995, 1466.[Crossref]
  • [80] J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, U.Goösele, Perfect Two-Dimensional Porous Alumina PhotonicCrystals with Duplex Oxide Layers, J. Appl. Phys. 94, 2003,4757.[Crossref]
  • [81] G.Macias, L. P. Hernández-Eguía, J. Ferré-Borrull, J. Pallares, L.F. Marsal, Gold-Coated Ordered Nanoporous Anodic AluminaBilayers for Future Label-Free Interferometric Biosensors, ACSAppl. Mater. Interfaces 5, 2013, 8093.[Crossref]
  • [82] G. Macias, J. Ferré-Borrull, J. Pallarès, L. F. Marsal, 1-DNanoporous Anodic Alumina Rugate Filters by Means ofSmall Current Variations for Real-Time Sensing Applications,Nanoscale Res. Lett. 9, 2014, 315.
  • [83] T. Kumeria, M. M. Rahman, A. Santos, J. Ferré-Borrull, L. F.Marsal, D. Losic, Structural and Optical Nanoengineering ofNanoporous Anodic Alumina Rugate Filters for Real-Time andLabel-Free Biosensing Applications, Anal. Chem. 86, 2014,1837.[Crossref]
  • [84] T. Kumeria, A. Santos, M. M. Rahman, J. Ferré-Borrull, L.F. Marsal, D. Losic, Advanced Structural Engineering ofNanoporous Photonic Structures: Tailoring Nanopore Architectureto Enhance Sensing Properties, ACS Photonics 1, 2014,1298.[Crossref]
  • [85] S. D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, M. J. Sailor,A Label-Free Porous Alumina Interferometric Immunosensor,ACS Nano 3, 2009, 3301.[Crossref]
  • [86] T. Kumeria, M. M. Rahman, A. Santos, J. Ferre, L. F. Marsal, D.Losic, Nanoporous Anodic Alumina Rugate Filters for Sensingof Ionic Mercury: Toward Environmental Point-of-Analysis Systems,ACS Appl. Mater. Interfaces 6, 2014, 12971.[Crossref]
  • [87] T. Kumeria, A. Santos, D. Losic, Ultrasensitive Nanoporous InterferometricSensor for Label-Free Detection of gold(III) Ions,ACS Appl. Mater. Interfaces 5, 2013, 11783.[Crossref]
  • [88] K. H. A. Lau, L.-S. Tan, K. Tamada, M. S. Sander,W. Knoll, HighlySensitive Detection of Processes Occurring Inside NanoporousAnodic Alumina Templates: A Waveguide Optical Study, J.Phys. Chem. B 108, 2004, 10812.[Crossref]
  • [89] A. Yamaguchi, K. Hotta, N. Teramae, OpticalWaveguide SensorBased on a Porous Anodic Alumina/aluminum Multilayer Film,Anal. Chem. 81, 2009, 105.[Crossref]
  • [90] K. Hotta, A. Yamaguchi, N. Teramae, Deposition of PolyelectrolyteMultilayer Film on a Nanoporous Alumina Membranefor Stable Label-Free Optical Biosensing, J. Phys. Chem. C 116,2012, 23533.[Crossref]
  • [91] K. Hotta, A. Yamaguchi, N. Teramae, Nanoporous WaveguideSensor with Optimized Nanoarchitectures for Highly SensitiveLabel-Free Biosensing, ACS Nano 6, 2012, 1541.[Crossref]
  • [92] A. Gitsas, B. Yameen, T. D. Lazzara, M. Steinhart, H. Duran, W.Knoll, Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing, Nano Lett. 10, 2010, 2173.[Crossref]
  • [93] F. Trivinho-Strixino, H. A. Guerreiro, C. S. Gomes, E. C. Pereira,F. E. G. Guimarães, Active Waveguide Effects from Porous AnodicAlumina: An Optical Sensor Proposition, Appl. Phys. Lett.97, 2010, 011902.[Crossref]
  • [94] G. Das, N. Patra, A. Gopalakrishnan, R. P. Zaccaria, A. Toma,S. Thorat, E. Di Fabrizio, A. Diaspro, M. Salerno, Fabricationof Large-Area Ordered and Reproducible Nanostructures forSERS Biosensor Application, Analyst 137, 2012, 1785.[Crossref]
  • [95] M. Shaban, A. G. A. Hady, M. Serry, A New Sensor for HeavyMetals Detection in Aqueous Media, IEEE Sens. J. 14, 2014,436.[Crossref]
  • [96] Y. Du, L. Shi, T. He, X. Sun, Y. Mo, SERS Enhancement Dependenceon the Diameter and Aspect Ratio of Silver-NanowireArray Fabricated by Anodic Aluminium Oxide Template, Appl.Surf. Sci. 255, 2008, 1901.[Crossref]
  • [97] C. Fu, Y. Gu, Z. Wu, Y. Wang, S. Xu, W. Xu, Surface-EnhancedRaman Scattering [SERS) Biosensing Based on NanoporousDielectric Waveguide Resonance, Sensors Actuators B Chem.201, 2014, 173–176.
  • [98] D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S.Yamamura, Y.-S. Kwon, E. Tamiya, Label-Free DNA BiosensorBased on Localized Surface Plasmon Resonance Coupled withInterferometry, Anal. Chem. 79, 2007, 1855.[Crossref]
  • [99] D.-K. Kim, K. Kerman, H. M. Hiep, M. Saito, S. Yamamura,Y. Takamura, Y.-S. Kwon, E. Tamiya, Label-Free Optical Detectionof Aptamer–protein Interactions Using Gold-Capped OxideNanostructures, Anal. Biochem. 379, 2008, 1.[Crossref]
  • [100] A. Santos, G. MacÍas, J. Ferré-Borrull, J. Pallarès, L. F. Marsal,Photoluminescent Enzymatic Sensor Based on NanoporousAnodic Alumina, ACS Appl. Mater. Interfaces 4, 2012, 3584.[Crossref]
  • [101] X. Li, Y. He, L. Que, Fluorescence Detection and Imaging ofBiomolecules Using the Micropatterned Nanostructured AluminumOxide, Langmuir 29, 2013, 2439.[Crossref]
  • [102] T. Kumeria, D. Losic, Reflective Interferometric Gas SensingUsing Nanoporous Anodic Aluminium Oxide (AAO), Phys. Stat.Sol. – Rapid Res. Lett. 5, 2011, 406.[Crossref]
  • [103] T. Kumeria, L. Parkinson, D. Losic, A Nanoporous InterferometricMicro-Sensor for Biomedical Detection of Volatile SulphurCompounds, Nanoscale Res. Lett. 6, 2011, 634.
  • [104] T. Kumeria, M. D. Kurkuri, K. R. Diener, L. Parkinson, D. Losic,Label-Free Reflectometric Interference Microchip BiosensorBased on Nanoporous Alumina for Detection of Circulating TumourCells, Biosens. Bioelectron. 35, 2012, 167.[Crossref]
  • [105] J. Álvarez, L. Sola, M. Cretich, M. J. Swann, K. B. Gylfason, T.Volden, M. Chiari, D. Hill, Real Time Optical Immunosensingwith Flow-through Porous Alumina Membranes, Sensors ActuatorsB Chem. 202, 2014, 834.
  • [106] A. Santos, V. S. Balderrama, M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarčs, L. F. Marsal, Tunable Fabry-Pérot InterferometerBased on Nanoporous Anodic Alumina for OpticalBiosensing Purposes, Nanoscale Res. Lett. 7, 2012, 370.
  • [107] T. Kumeria, D. Losic, Controlling Interferometric Properties ofNanoporous Anodic Aluminium Oxide, Nanoscale Res. Lett. 7,2012, 88.
  • [108] M. M. Rahman, L. F. Marsal, J. Pallarès, J. Ferré-Borrull, Tuningthe Photonic Stop Bands of Nanoporous Anodic Alumina-Based Distributed Bragg Reflectors by Pore Widening, ACSAppl. Mater. Interfaces 5, 2013, 13375.[Crossref]
  • [109] P. Yan, G. T. Fei, G. L. Shang, B. Wu, L. De Zhang, Fabricationof One-Dimensional Alumina Photonic Crystals with a NarrowBand Gap and Their Application to High-Sensitivity Sensors, J.Mater. Chem. C 1, 2013, 1659.
  • [110] D.-L. Guo, L.-X. Fan, F.-H. Wang, S.-Y. Huang, X.-W. Zou, PorousAnodic Aluminum Oxide Bragg Stacks as Chemical Sensors, J.Phys. Chem. C 112, 2008, 17952.[Crossref]
  • [111] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, ElectrochemicalBiosensors - Sensor Principles and Architectures,Sensors 8, 2008, 1400.[Crossref]
  • [112] A. Hajian, A. A. Rafati, A. Afraz, M. Najafi, Electrosynthesis ofHigh-Density Polythiophene Nanotube Arrays and Their Applicationfor Sensing of Riboflavin, J. Mol. Liq. 199, 2014, 150.[Crossref]
  • [113] J. C. Claussen, M. S. Artiles, E. S. McLamore, S. Mohanty, J.Shi, J. L. Rickus, T. S. Fisher, D. M. Porterfield, ElectrochemicalGlutamate Biosensing with Nanocube and Nanosphere AugmentedSingle-Walled Carbon Nanotube Networks: A Comparative Study, J. Mater. Chem. 21, 2011, 11224.[Crossref]
  • [114] A. De la Escosura-Muñiz, A. Merkoçi, Nanochannel/Nanoparticle-Based Filtering and Sensing Platform for Direct Detectionof a Cancer Biomarker in Blood, Small 7, 2011, 675.[Crossref]
  • [115] N. J. Ronkainen, H. B. Halsall,W. R. Heineman, ElectrochemicalBiosensors, Chem. Soc. Rev. 39, 2010, 1747.[Crossref]
  • [116] J. C. Claussen, M. M. Wickner, T. S. Fisher, D. M. Porterfield,Transforming the Fabrication and Biofunctionalization of GoldNanoelectrode Arrays into Versatile Electrochemical GlucoseBiosensors, ACS Appl. Mater. Interfaces 3, 2011, 1765.[Crossref]
  • [117] J. Li, L. Liu, P. Wang, J. Zheng, Potentiometric Detection of SaccharidesBased on Highly Ordered Poly(aniline Boronic Acid)Nanotubes, Electrochim. Acta 121, 2014, 369.
  • [118] K. Y. Chan, W. W. Ye, Y. Zhang, L. D. Xiao, P. H. M. Leung, Y.Li, M. Yang, Ultrasensitive Detection of E. Coli O157:H7 withBiofunctional Magnetic Bead Concentration via NanoporousMembrane Based Electrochemical Immunosensor, Biosens.Bioelectron. 41, 2013, 532.
  • [119] J.-B. Largueze, K. El Kirat, S. Morandat, Preparation of anElectrochemical Biosensor Based on Lipid Membranes inNanoporous Alumina, Colloids Surfaces B Biointerfaces 79,2010, 33.[Crossref]
  • [120] Y. Li, H. Bai, Q. Liu, J. Bao, M. Han, Z. A. Dai, NonenzymaticCholesterol Sensor Constructed by Using Porous Tubular SilverNanoparticles, Biosens. Bioelectron. 25, 2010, 2356.[Crossref]
  • [121] B. T. T Nguyen, G. Koh, H. S. Lim, A. J. S. Chua, M. M. L. Ng, C.-S.Toh, Membrane-Based Electrochemical Nanobiosensor for theDetection of Virus, Anal. Chem. 81, 2009, 7226.[Crossref]
  • [122] A. De la Escosura-Muñiz, A. Mekoçi, Nanoparticle Based Enhancementof Electrochemical DNA Hybridization Signal UsingNanoporous Electrodes, Chem. Commun. 46, 2010, 9007.[Crossref]
  • [123] A. De La Escosura-Muñiz, A. Merkoçi, Nanochannels Preparationand Application in Biosensing, ACS Nano 6, 2012, 7556.[Crossref]
  • [124] A. De la Escosura-Muñiz, A. Merkoçi, Label-Free VoltammetricImmunosensor Using a Nanoporous Membrane Based Platform,Electrochem. Commun. 12, 2010, 859.[Crossref]
  • [125] S.-J. Li, N. Xia, B.-Q. Yuan, W.-M. Du, S.-Z. Sun, B.-B. Zhou, ANovel DNA Sensor Using a Sandwich Format by ElectrochemicalMeasurement ofMarker Ion Fluxes across Nanoporous AluminaMembrane, Electrochim. Acta 159, 2015, 234.
  • [126] J. Yu, Z. Liu, Q. Liu, K. T. Yuen, A. F. T. Mak, M. Yang, P. Leung,A Polyethylene Glycol (PEG) Microfluidic Chip with Nanostructuresfor Bacteria Rapid Patterning and Detection, Sensors ActuatorsA Phys. 154, 2009, 288.
  • [127] C. Song,W. Shi, H. Jiang, J. Tu, D. Ge, pH-Sensitive Characteristicsof Poly [acrylic Acid]-Functionalized Anodic Aluminum Oxide(AAO) Membranes, J. Memb. Sci. 372, 2011, 340.
  • [128] A. E. K. Peh, S. F. Y. Li, Dengue Virus Detection UsingImpedance Measured across Nanoporous Aluminamembrane,Biosens. Bioelectron. 42, 2013, 391.[Crossref]
  • [129] C.-K. Joung, H.-N. Kim, M.-C.; Lim, T.-J.; Jeon, H.-Y.; Kim, Y.-R.; Kim, A Nanoporous Membrane-Based Impedimetric Immunosensorfor Label-Free Detection of Pathogenic Bacteriain Whole Milk, Biosens. Bioelectron. 44, 2013, 210.[Crossref]
  • [130] Z. Yang, S. Si, H. Dai, C. Zhang, Piezoelectric Urea BiosensorBased on Immobilization of Urease onto Nanoporous AluminaMembranes, Biosens. Bioelectron. 22, 2007, 3283.[Crossref]
  • [131] Z. Yang, S. Si, C. Zhang, Study on the Activity and Stabilityof Urease Immobilized onto Nanoporous Alumina Membranes,Microporous Mesoporous Mater. 111, 2008, 359.
  • [132] Y.-G. Zhou, S. Yang, Q.-Y. Qian, X.-H. Xia, Gold NanoparticlesIntegrated in a Nanotube Array for Electrochemical Detectionof Glucose, Electrochem. Commun. 11, 2009, 216.[Crossref]
  • [133] J. Yu, Y. Zhang, S. Liu, Enzymatic Reactivity of Glucose OxidaseConfined in Nanochannels, Biosens. Bioelectron. 55, 2014,307. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_mesbi-2015-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.