Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 10 | 1 |

Article title

Artifacts reduction in strain maps of tagged magnetic resonance imaging using harmonic phase

Content

Title variants

Languages of publication

EN

Abstracts

EN
Tagged Magnetic Resonance Imaging (MRI) is a noninvasive technique for examining myocardial function and deformation. Tagged MRI can also be used in quasistatic MR elastography to acquire strain maps of other biological soft tissues. Harmonic phase (HARP) provides automatic and rapid analysis of tagged MR images for the quantification and visualization of myocardial strain. We propose a new artifact reduction method in strain maps. Image intensity of the DC component is estimated and subtracted from spatial modulation of magnetization (SPAMM) tagged MR images. DC peak interference in harmonic phase extraction is greatly reduced after DC component subtraction. The proposed method is validated using both simulated and MR acquired tagged images. Strain maps are obtained with better accuracy and smoothness after DC component subtraction.

Publisher

Journal

Year

Volume

10

Issue

1

Physical description

Dates

published
1 - 1 - 2015
received
10 - 7 - 2015
accepted
15 - 10 - 2015
online
17 - 12 - 2015

Contributors

author
  • Department of Mechanical Engineering, Shanghai University of ElectricPower, 200090 Shanghai, China
author
  • Department of Mechanical Engineering, National University of Singapore, 117576 Singapore
  • Faculty of Science & Natural Resources, Universiti Malaysia Sabah 88400 Kota Kinabalu Sabah Malaysia

References

  • [1] Wu K.C., Lima J.A., Noninvasive imaging of myocardial viability: current techniques and future developments, Circ. Res., 2003, 93, 1146-1158[Crossref]
  • [2] Bax J.J., De R.A., Van E.E., Assessment of myocardial viability by MRI, J. Magn. Reson. Imaging, 1999, 10, 418-422[Crossref]
  • [3] Fu Y.B., Chui C.K., Teo C.L., Kobayashi E., Motion tracking and strain map computation for quasi-static Magnetic Resonance Elastography, MICCAI, LNCS, 2011, 6891, 433-440
  • [4] Fu Y.B., Chui C.K., Teo C.L., Kobayashi E., Chang S., A new actuation system with simulated electrocardiogram signal for MR Elastography, ASME Journal of Medical Devices, 2010
  • [5] Atalar E., McVeigh E., Optimization of tag thickness for measuring position with magnetic resonance imaging, IEEE Trans. Med. Imag., 1994, 13, 1, 152-160[Crossref]
  • [6] Guttman M.A., Prince J.L., McVeigh E.R., Tag and contour detection in tagged MR images of the left ventricle, IEEE Trans. Med. Imag., 1994, 13, 1, 74-88[Crossref]
  • [7] Kerwin W.S., Prince J.L., Tracking MR tag surfaces using a spatiotemporal filter and interpolator, Int. J. Imag. Sys. Tech., 1999, 10, 2, 128-142[Crossref]
  • [8] Deng X., Thomas S.D., Combined tag tracking and strain reconstruction from tagged cardiac MR images without userdefined myocardial contours, J. Magn. Reson. Imaging, 2005, 21, 1, 12-22[Crossref]
  • [9] Kumar S., Goldgof D., Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images, IEEE Trans.Med. Imag., 1993, 13, 122-132[Crossref]
  • [10] Amini A.A., Chen Y., Curwen R.W., Mani V., Sun J., Coupled Bsnake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI, IEEE Trans. Med. Imag., 1998, 17, 3, 344-356[Crossref]
  • [11] Qian Z., Huang X., Metaxas D., Axel L., Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation, In. Proc. SPIE Med. Imag., 2005, 580-591[Crossref]
  • [12] Prince J.L., McVeigh E.R., Motion estimation from tagged MR image sequences, IEEE Trans. Med. Imag., 1992, 11, 2, 238-249[Crossref]
  • [13] Denney J.T., Prince J.L., Optimal brightness functions for optical flow estimation of deformable motion, IEEE Trans. Image Proc., 1994, 3, 2, 178-191[Crossref]
  • [14] Gupta S.N., Prince J.L., On variable brightness optical flow for tagged MRI, Proc. Inf. Process.Med. Imag., 1995, 323-334
  • [15] Haber I., Kikinis R., Westin C.F., Phase-driven finite element model for spatio-temporal tracking in tagged cardiac MRI, In. Proc. MICCAI, 2001
  • [16] Osman N.F., Kerwin W.S., McVeigh E.R., Prince J.L., Cardiac motion tracking using cine harmonic phase (harp) magnetic resonance imaging, Magn. Reson. Med., 1999, 42, 1048-1060[Crossref]
  • [17] Osman N.F., McVeigh E.R., Prince J.L., Imaging heart motion using harmonic phase MRI, IEEE Trans. Med. Imag., 2000, 19, 186-202[Crossref]
  • [18] Liu W., Chen J.J., Ji S.B., Allen S.J., Bayly P.V., Wickline S.A., Yu X., Harmonic Phase MR Tagging for Direct Quantification of Lagrangian Strain in Rat Hearts after Myocardial Infarction, Magn. Reson. Med., 2004, 52, 1282-1290[Crossref]
  • [19] Pan L., Prince J.L., Lima J.A., Osman N.F., Fast tracking of cardiac motion using 3D-HARP, IEEE Trans. Biomed. Eng., 2005, 52, 8, 1425-1435[Crossref]
  • [20] Venkatesh B.A., Gupta H., Lloyd S.G., Italia L.D., Denney T.S., 3D left ventricular strain from unwrapped harmonic phase measurements, J. Magn. Reson. Imag., 2010, 31, 854-862[Crossref]
  • [21] Osman N.F., Prince J.L., Visualizing myocardial function using HARP MRI, Phys. Med. Biol., 2000, 45, 6, 1665-1682[Crossref]
  • [22] Arts T., Prinzen F.W., Delhaas T., Milles J.R., Rossi A.C., Clarysse P., Mapping displacement and deformation of the heart with local sine-wave modeling, IEEE Trans. Med. Imag., 2010, 29
  • [23] Osman N.F., Prince J.L., On the design of the bandpass filters in harmonic phase MRI, Image Processing, International Conference, 2000, 1, 625-628
  • [24] Marinelli M., Positano V., Osman N.F., Recchia F.A., Lombardi M., Landini L., Automatic filter design in HARP analysis of tagged Magnetic Resoance Images, Biomedical Imaging: From Nano to Macro ,ISBI. 5th IEEE International Symposium, 2008, 1429-1432
  • [25] Barajas J., Barnes J.G., Carreras F., Pujadas S., Radeva P., Angle images using gabor filters in cardiac tagged MRI, Proceeding of the conference on Artificial Intelligence Research and Development, 2005
  • [26] Davis C.A., Li J., Denny T.S., Analysis of spectral changes and filter design in tagged cardiac MRI, Biomedical Imaging: Nano to Macro, 3rd IEEE International Symposium, 2006, 137-140
  • [27] Ryf S., Tsao J., Schwitter J., Stuessi A., Boesiger P., Peakcombination HARP: A method to correct for phase errors in HARP, J. Magn. Reson. Imaging, 2004, 20, 5, 874-880[Crossref]
  • [28] Fischer S.E., McKinnon G.C., Maier S.E., Boesiger P., Improved myocardial tagging contrast, Magn. Reson. Med., 1993, 30, 191-200[WoS][Crossref]
  • [29] Kuijer J.P., Jansen E., Marcus J.T., Rossum A.C., Heethaar R.M., Improved harmonic phase myocardial strain maps, Magn. Reson. Med., 2001, 46, 993-999[Crossref]
  • [30] Agarwal H.K., Prince J.L., Abd-Elmoniem K.Z., Total removal of unwanted harmonic peaks (TruHARP) MRI for single breath-hold high-resolution myocardial motion and strain quantification, Magn. Reson. Med., 2010, 64, 574-585
  • [31] Aletras A.H., Freidlin R.Z., Navon G., Arai A.E., AIR-SPAMM: alternative inversion recovery spatial modulation of magnetization for myocardial tagging, J. Magn. Reson., 2004, 166, 236-245

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_med-2015-0074
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.