PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |
Article title

Multiscale asymptotics for the Skeleton of
the Madden-Julian Oscillation and
Tropical–Extratropical Interactions

Content
Title variants
Languages of publication
EN
Abstracts
EN
Anew model is derived and analyzed for tropical–extratropical interactions involving the Madden–
Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic
waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined
system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive
a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features
are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition
(meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in threewave
resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including
cases of (i) the MJO, equatorial baroclinic Rossbywaves, and barotropic Rossbywaves interacting, and (ii) the
MJO, baroclinic Kelvinwaves, and barotropic Rossbywaves interacting. Resonance with the Kelvinwave is not
possible here if only dry variables are considered, but it occurs in the moist model here through interactions
with water vapor and convective activity.
Publisher
Year
Volume
1
Issue
1
Physical description
Dates
received
11 - 6 - 2015
accepted
13 - 10 - 2015
online
30 - 11 - 2015
References
  • [1] A. D. D. Craik. Wave Interactions and Fluid Flows. Cambridge Univ Press, Cambridge, 1985.
  • [2] J. Ferguson, B. Khouider, and M. Namazi. Two-way interactions between equatorially trappedwaves and the barotropic flow.Chinese Annals of Mathematics, Series B, 30:539–568, 2010.[WoS]
  • [3] J. S. Frederiksen and C. S. Frederiksen. Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking,and storm tracks of the global atmosphere during January 1979: Linear theory. J. Atmos. Sci., 50:1349–1372, 1993.[Crossref]
  • [4] F.-F. Jin and B. J. Hoskins. The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52(3):307–319,February 1995.[Crossref]
  • [5] B. Khouider and A. J. Majda. A non-oscillatory balanced scheme for an idealized tropical climate model: Part I: Algorithmand validation. Theor. Comp. Fluid Dyn., 19(5):331–354, 2005.[Crossref]
  • [6] B. Khouider, A. J. Majda, and S. N. Stechmann. Climate science in the tropics: waves, vortices and PDEs. Nonlinearity,26(1):R1–R68, 2013.[WoS][Crossref]
  • [7] G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy. Convectively coupled equatorial waves. Rev.Geophys., 47:RG2003, 2009.[WoS]
  • [8] W. K. M. Lau and D. E.Waliser, editors. Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin,2012.
  • [9] H. Lin, G. Brunet, and J. Derome. An observed connection between the north Atlantic oscillation and the Madden-Julianoscillation. J. Clim., 22:364–380, 2009.[Crossref][WoS]
  • [10] R. A. Madden and P. R. Julian. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci.,28(5):702–708, 1971.[Crossref]
  • [11] R. A. Madden and P. R. Julian. Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos.Sci., 29:1109–1123, September 1972.[Crossref]
  • [12] R. A. Madden and P. R. Julian. Observations of the 40–50-day tropical oscillation-a review. Mon. Wea. Rev., 122:814–837,1994.
  • [13] A. J. Majda. Introduction to PDEs and Waves for the Atmosphere and Ocean, volume 9 of Courant Lecture Notes in Mathematics.American Mathematical Society, Providence, 2003.
  • [14] A. J. Majda and J. A. Biello. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci.,60:1809–1821, August 2003.
  • [15] A. J. Majda, R. R. Rosales, E. G. Tabak, and C. V. Turner. Interaction of large-scale equatorial waves and dispersion of Kelvinwaves through topographic resonances. J. Atmos. Sci., 56:4118–4133, December 1999.[Crossref]
  • [16] A. J.Majda and M. G. Shefter. Models of stratiform instability and convectively coupled waves. J. Atmos. Sci., 58:1567–1584,2001.
  • [17] A. J. Majda and S. N. Stechmann. A simple dynamical model with features of convective momentum transport. J. Atmos.Sci., 66:373–392, 2009.[WoS][Crossref]
  • [18] A. J. Majda and S. N. Stechmann. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA,106(21):8417–8422, 2009.[Crossref]
  • [19] A. J. Majda and S. N. Stechmann. Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68:3053–3071, 2011.[WoS]
  • [20] A.Matthews, B. J. Hoskins, and M.Masutani. The global response to tropical heating in theMadden-Julian oscillation duringthe northern winter. Q. J. R. Meteorol. Soc., 130:1991–2011, 2004.
  • [21] A. Matthews and G. N. Kiladis. The tropical-extratropical interaction between high-frequency transients and the Madden-Julian oscillation. Mon. Wea. Rev., 127:661–677, May 1999.
  • [22] J. David Neelin and Ning Zeng. A quasi-equilibrium tropical circulation model-formulation. J. Atmos. Sci., 57:1741–1766,2000.
  • [23] J. Pedlosky. Geophysical Fluid Dynamics. Springer–Verlag, 2nd edition, 1987.
  • [24] C. F. M. Raupp and P. L. Silva Dias. Dynamics of resonantly interacting equatorial waves. Tellus, 58(A):263–279, 2006.[Crossref]
  • [25] C. F. M. Raupp and P. L. Silva Dias. Resonant wave interactions in the presence of diurnally varying heat source. J. Atmos.Sci., 66:3165–3183, 2009.[WoS][Crossref]
  • [26] C. F. M. Raupp, E. G. Tabak, and P. Milewski. Resonant wave interactions in the equatorial waveguide. J. Atmos. Sci., 65:263–279, 2008.[WoS]
  • [27] P. Ray and C. Zhang. A case study of the mechanics of extratropical influence on the initiation of theMadden-Julian oscillation. J. Atmos. Sci., 67:515–528, Feburary 2010.[WoS][Crossref]
  • [28] G. M. Reznik and V. Zeitlin. Resonant excitation of Rossby waves in the equatorial waveguide and their nonlinear evolution.Phys. Rev. Lett., 96(3):34502, 2006.[Crossref]
  • [29] G. M. Reznik and V. Zeitlin. Interaction of free Rossby waves with semi-transparent equatorial waveguide. Part 1. Wavetriads. Physica D: Nonlinear Phenomena, 226(1):55–79, 2007.[WoS][Crossref]
  • [30] P. Ripa. On the theory of nonlinear wave-wave interactions among geophysical waves. J. Fluid Mech., 103:87–115, 1981.[Crossref]
  • [31] P. Ripa. Nonlinear wave–wave interactions in a one-layer reduced-gravity model on the equatorial b-plane. J. Phys. Ocean.,12(1):97–111, 1982.[Crossref]
  • [32] P. E. Roundy. Tropical–extratropical interactions. In W. K. M. Lau and D. E. Waliser, editors, Intraseasonal Variability in theAtmosphere–Ocean Climate System. Springer, Berlin, 2011.
  • [33] J. P. Stachnik, D. E.Waliser, and A. J.Majda. Precursor environmental conditions associatedwith the termination of Madden–Julian oscillation events. J. Atmos. Sci., 72(5):1908–1931, 2015.[WoS][Crossref]
  • [34] S. N. Stechmann and A. J. Majda. Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon.Wea. Rev., 143:395–416, 2015.[WoS]
  • [35] S. Thual, A. J. Majda, and S. N. Stechmann. Asymmetric intraseasonal events in the stochastic skeleton MJO model withseasonal cycle. Climate Dynamics, 45:603–618, 2015.[Crossref][WoS]
  • [36] K. M. Weickmann. Intraseasonal circulation and outgoing longwave radiation modes during northern hemisphere winter.Mon. Wea. Rev., 111:1838–1858, September 1983.
  • [37] K. M. Weickmann and E. Berry. The tropical Madden-Julian Oscillation and the global wind oscillation. Mon. Wea. Rev.,137:1601–1614, May 2009.
  • [38] K. M. Weickmann, G. R. Lussky, and Kutzback J. E. Intraseasonal (30-60 day) fluctuations of outgoing longwave radiationand 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113:941–961, June 1985.
  • [39] C. Zhang. Madden–Julian Oscillation. Reviews of Geophysics, 43:RG2003, June 2005.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_mcwf-2015-0003
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.