Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Survival of Bifidobacteria and their usefulness
in Faecal Source Tracking


Title variants

Languages of publication



Bifidobacteria have long since been
recommended as indicators of human and animal
pollution. Concentration ratio (tracking ratio) of
the sorbitol-utilising bifidobacteria (SUB) and the
total bifidobacteria (TB) can be used to distinguish
between animal and human sources of faecal water
contamination. The cut-off value needs to be calibrated
in a given geographical area. Seven sites with permanent
faecal contamination were selected in South Africa.
Concentrations of SUB ranged from 10-50000 cells/100
mL, while TB ranged from 0-8000 cells/100 mL. The
tracking ratio ranged from 0.10 to 6.25, but no clear cut-off
value could be established. The YN-17 agar was replaced
for TB with the modified Beerens medium with pH = 5.70,
to suppress the growth of faecal streptococci. Tracking
ratios observed are most likely the results of different
survival rates of SUB and TB. Bifidobacteria die-off due
to nutrients was not found to be significant using design
of experiment. Thus a lack of continuous input or oxygen
levels in water may be major factors. This would limit the
ratios used as a faecal source tracking method.







Physical description


16 - 7 - 2015


  • Environmental Health and Biotechnology
    Research Group, Division of Pharmaceutical Chemistry, Faculty of
    Pharmacy, Rhodes University, South Africa
  • Division of Pharmaceutics, Faculty of Pharmacy,
    Rhodes University, South Africa
  • Amatole Waterboard, East London, South Africa
  • Environmental Health and Biotechnology
    Research Group, Division of Pharmaceutical Chemistry, Faculty of
    Pharmacy, Rhodes University, South Africa


  • AHMED, W., STEWART, J., GARDNER, T., POWELL, D., BROOKS, P., SULLIVAN, D. & TINDALE, N. 2007. Sourcing faecal pollution: A Combination of Library-Dependent and Library-Independent Methods to Identify Human Faecal Pollution in Non-Sewered Catchments. Water Research, 41, 3771-3779.[WoS][Crossref]
  • BALFOUR, F., BADENHORST, H. & TROLLIP, D. 2011. A Gap Analysis of Water Testing Laboratories in South Africa. Pretoria, South Africa: Water Research Commission.
  • BALLESTÉ, E. & BLANCH, A. R. 2011. Bifidobacterial Diversity and the Development of New Microbial Source Tracking Indicators. Applied and Environmental Microbiology, 77, 3518-3525.[WoS]
  • BALLONGUE, J. 2004. Bifidobacteria and Probiotic Action. In: SALMINEN, S., WRIGHT, A. V. & OUWEHAND, A. (eds.) Lactic Acid Bacteria: Microbiological and Functional Aspects, Third Edition, Revised and Expanded. Third Edition, Revised and Expanded ed. USA: Marcel Dekker, Inc.
  • BEERENS, H. 1990. An elective and selective isolation medium for Bifidobacterium spp. Letters in applied microbiology, 11, 155-157.[Crossref]
  • BLANCH, A. R., BELANCHE-MUNOZ, L., BONJOCH, X., EBDON, J., GANTZER, C., LUCENA, F., OTTOSON, J., KOURTIS, C., IVERSEN, A., KUHN, I., MOCE, L., MUNIESA, M., SCHWARTZBROD, J., SKRABER, S., PAPAGEORGIOU, G. T., TAYLOR, H., WALLIS, J. & JOFRE, J. 2006. Integrated Analysis of Established and Novel Microbial and Chemical Methods for Microbial Source Tracking. Applied and Environmental Microbiology, 72, 5915-5926.[Crossref]
  • BOLDUC, M.-P., RAYMOND, Y., FUSTIER, P., CHAMPAGNE, C. P. & VUILLEMARD, J.-C. 2006. Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk. International Dairy Journal, 16, 1038-1048.[Crossref]
  • BONJOCH, X., BALLESTÉ, E. & BLANCH, A. R. 2005. Enumeration of Bifidobacterial Populations with Selective Media to Determine the Source of Waterborne Fecal Pollution. Water Research, 39, 1621-1627.
  • BONJOCH, X., LUCENA, F. & BLANCH, A. R. 2009. The persistence of bifidobacteria populations in a river measured by molecular and culture techniques. Journal of Applied Microbiology, 107, 1178-1185.[WoS]
  • BOX, G. E. P. & WILLIAM, J. S. H. 2005. Statistics for Experimenters : Design, Innovation, and Discovery New York, John Wiley and Sons.
  • BURTON, G. A., GUNNISON, D. & LANZA, G. R. 1987. Survival of pathogenic bacteria in various freshwater sediments. Applied and Environmental Microbiology, 53, 633-638.[WoS]
  • CARRILLO, M., ESTRADA, E. & HAZEN, T. C. 1985. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Applied and Environmental Microbiology, 50, 468-476.
  • CIMENTI, M., HUBBERSTEY, A., BEWTRA, J. K. & BISWAS, N. 2007. Alternative Methods in Tracking Sources of Microbial Contamination in Waters. Water SA, 33, 183-194.
  • GEERAERD, A. 2012. GInaFiT: Geeraerd and Van Impe Inactivation model Fitting Tool. 1.6 ed. Belgium: Katholieke Universiteit Leuven (Belgium).
  • GYLLENBERG, H., NIEMELA, S. & SORMUNEN, T. 1960. Survival of bifid bacteria in water as compared with that of coliform bacteria and enterococci. Applied Microbiology, 8, 20-22.
  • HAGEDORN, C., BLANCH, A. R. & HARWOOD, V. J. (eds.) 2011. Microbial Source Tracking: Methods, Applications, and Case Studies: Springer.
  • HANSEN, L. T., ALLAN-WOJTAS, P. M., JIN, Y. L. & PAULSON, A. T. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology, 19, 35-45.
  • JAGALS, P. & GRABOW, W. 1996. An evaluation of sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution of environmental water. WATER SA-PRETORIA-, 22, 235-238.
  • JAYAMANNE, V. S. & ADAMS, M. R. 2006. Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Letters in applied microbiology, 42, 189-194.[Crossref]
  • JAYAMANNE, V. S. & ADAMS, M. R. 2009. Modelling the effects of pH, storage temperature and redox potential (Eh) on the survival of bifidobacteria in fermented milk. International Journal of Food Science & Technology, 44, 1131-1138.
  • LALIBERTE, P. & GRIMES, D. J. 1982. Survival of Escherichia coli in lake bottom sediment. Applied and Environmental Microbiology, 43, 623-628.
  • LEWIN, S., NORMAN, R., NANNAN, N., THOMAS, E., BRADSHAW, D. & COLLABORATION, S. A. C. R. A. 2007. Estimating the burden of disease attributable to unsafe water and lack of sanitation and hygiene in South Africa in 2000. South African Medical Journal, 97, 755-762.
  • LUYT, C. D., TANDLICH, R., MULLER, W. J. & WILHELMI, B. S. 2012. Review: Microbial Monitoring of Surface Water in South Africa: An Overview. International Journal of Environmental Research and Public Health 9, 2669-2693.[WoS]
  • MARA, D. D. & ORAGUI, J. I. 1983. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution. Journal of applied microbiology, 55, 349-357.
  • MATSUMOTO, M., OHISHI, H. & BENNO, Y. 2004. H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. International journal of food microbiology, 93, 109-113.
  • MEAYS, C. L., BROERSMA, K., NORDIN, R. & MAZUMDER, A. 2004. Source tracking fecal bacteria in water: a critical review of current methods. Journal of environmental management, 73, 71-79.[Crossref]
  • MURRAY, K., DU PREEZ, M., KUHN, A. & VAN NIEKER, H. 2004. A Pilot Study to Demonstrate Implementation of the National Microbial Monitoring Programme. Pretoria, South Africa: Report to the Water Research Commission.
  • MUSHI, D., BYAMUKAMA, D., KIVAISI, A. K., MACH, R. L. & FARNLEITNER, A. H. 2010. Sorbitol-Fermenting Bifidobacteria are Indicators of Very Recent Human Faecal Pollution in Streams and Groundwater Habitats in Urban Tropical Lowlands. Journal of Water and Health, 8, 466-478.[WoS][Crossref]
  • NEBRA, Y., JOFRE, J. & BLANCH, A. R. 2002. The effect of reducing agents on the recovery of injured Bifidobacterium cells. Journal of microbiological methods, 49, 247-254.
  • OTTOSON, J. R. 2009. Bifidobacterial survival in surface water and implications for microbial source tracking. Canadian journal of microbiology, 55, 642-647.[WoS]
  • PLYMOUTH MARINE LABORATORY 2009. Primer 6 & Permanova +. 6.1.13 & 1.03 ed. United Kingdom: Primer - E.
  • PMG, P. M. G. 2009. Water Cuts & Cholera Situation in City of Cape Town: City, Departmental & Civil Community Responses. . Available: http://www.pmg.org.za/report/20090204-department-health-department-water-affairs-forestry-responses-cholera.
  • PONTES, K. V., WOLF MACIEL, M. R., MACIEL, R. & EMBIRUÇU, M. 2011. Process analysis and optimization mapping through design of experiments and its application to a polymerization process. Brazilian Journal of Chemical Engineering, 28, 137-150.[Crossref][WoS]
  • RELIASOFT CORPARATION 2011. DOE ++. 1.0.7 ed.: ReliaSoft Corparation,.
  • RESNICK, I. G. & LEVIN, M. A. 1981. Assessment of bifidobacteria as indicators of human fecal pollution. Appl. Environ. Microbiol., 42, 433-438.
  • ROLFE, R. D., HENTGES, D. J., BARRETT, J. T. & CAMPBELL, B. J. 1977. Oxygen tolerance of human intestinal anaerobes. The American Journal of Clinical Nutrition, 30, 1762-9.
  • SAARELA, M., ALAKOMI, H. L., MÄTTÖ, J., AHONEN, A. M., PUHAKKA, A. & TYNKKYNEN, S. 2010. Improving the storage stability of Bifidobacterium breve in low pH fruit juice. International journal of food microbiology, In Press, Corrected Proof.
  • SALMINEN, S., VON WRIGHT, A. & OUWEHAND, A. 2004. Lactic Acid Bacteria: Microbiological and Functional Aspects, Marcel Dekker, Inc.
  • SCOTT, T. M., ROSE, J. B., JENKINS, T. M., FARRAH, S. R. & LUKASIK, J. 2002. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol., 68, 5796-5803.
  • SHAH, N. P. & LANKAPUTHRA, W. E. V. 1997. Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. International Dairy Journal, 7, 349-356.[Crossref]
  • SHAH, N. P., LANKAPUTHRA, W. E. V., BRITZ, M. L. & KYLE, W. S. A. 1995. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. International Dairy Journal, 5, 515-521.[Crossref]
  • SHERER, B. M., MINER, J. R., MOORE, J. A. & BUCKHOUSE, J. C. 1992. Indicator Bacterial Survival in Stream Sediments. J. Environ. Qual., 21, 591-595.[Crossref]
  • SINTON, L. W., FINLAY, R. K. & HANNAH, D. J. 1998. Distinguishing Human from Animal Faecal Contamination in Water: A Review. New Zealand Journal of Marine and Freshwater Research, 32, 323 - 348.[Crossref]
  • TALWALKAR, A. & KAILASAPATHY, K. 2004. A Review of Oxygen Toxicity in Probiotic Yogurts: Influence on the Survival of Probiotic Bacteria and Protective Techniques. Comprehensive Reviews in Food Science and Food Safety, 3, 117-124.
  • TANDLICH, R., LUYT, C. & MULLER, W. 2012. Faecal contamination source identification using a combination of chemical and microbial biomarkers. Pretoria: Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University; Unilever Centre for Environmental Water Quality Institute for Water Research Rhodes University.
  • WANG, Y.-C., YU, R.-C. & CHOU, C.-C. 2002. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiology, 19, 501-508.[Crossref]
  • WILSON, M. 2005. Microbial Inhabitants of Humans: Their ecology and role in health and disease, Cambridge, United Kingdom, Cambridge University Press.
  • ZUMA, B. M. 2010. Microbial Ecology of the Buffalo River in Response to Water Quality Changes. Msc, Rhodes University.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.