Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 16 | 2 | 71-77

Article title

Effects of Interval Training-Based Glycolytic Capacity on Physical Fitness in Recreational Long-Distance Runners


Title variants

Languages of publication



Purpose. The aim of this study was to investigate the influence of 8-week-long interval training (targeting glycolytic capacity) on selected markers of physical fitness in amateur long-distance runners. Methods. The study involved 17 amateur long-distance runners randomly divided into an experimental (n = 8) and control (n = 9) group. The control group performed three or four continuous training sessions per week whereas the experimental group performed two interval running training sessions and one continuous running training session. A graded treadmill exercise test and the 12-min Cooper test were performed pre- and post-training. Results. O2max and the rate of recovery increased in the experimental group. Relative oxygen uptake, minute ventilation, and heart rate speed decreased in low- (6 km/h) and medium-intensity (12 km/h) running. Conclusions. Both training modalities showed similar results. However, the significant differences in training volume (4-8 min interval training vs. 40-150 min continuous training) indicates that the modalities targeting glycolytic capacity may be more efficient for amateur runners prepare for long-distance events.










Physical description


1 - 6 - 2015
13 - 4 - 2015
27 - 8 - 2015
9 - 6 - 2015


  • University School of Physical Education, Wrocław, Poland
  • University School of Physical Education, Wrocław, Poland
  • Katedra Fizjologii i Biochemii Akademia Wychowania Fizycznego al. I.J. Paderewskiego 3551-612 Wrocław, Poland


  • 1. Rapoport B.I., Metabolic factors limiting performance in marathon runners. PLoS Comput Biol, 2010, 6 (10), e1000960, doi: 10.1371/journal.pcbi.1000960.[Crossref][WoS]
  • 2. Tanda G., Knechtle B., Marathon performance in relation to body fat percentage and training indices in recreational male runners. Open Access J Sports Med, 2013, 4, 141-149, doi: 10.2147/OAJSM.S44945.[Crossref]
  • 3. Booth M.L., Bauman A., Owen N., Gore C.J., Physical activity preferences, preferred sources of assistance, and perceived barriers to increased activity among physically inactive Australians. Preventive Med, 1997, 26 (1), 131-137, doi: 10.1006/pmed.1996.9982.[Crossref]
  • 4. Maughan R.J., Gleeson M., Greenhaff P.L., Biochemistry of Exercise & Training. University Press, Oxford 1997.
  • 5. Joyner M.J., Coyle E.F., Endurance exercise performance: the physiology of champions. J Physiol, 2008, 586 (1), 35-44, doi: 10.1113/jphysiol.2007.143834.[Crossref]
  • 6. Poole D.C., Richardson R.S., Determinants of oxygen uptake - implications for exercise testing. Sports Med, 1997, 24 (5), 308-320, doi: 10.2165/00007256-199724050-00003.[Crossref]
  • 7. Zatoń M., Jastrzębska A. (eds.), Physiological tests in the assessment of physical fitness [in Polish]. PWN, Warszawa 2010
  • 8. Levine B.D., VO2max: what do we know, and what do we still need to know? J Physiol, 2008, 586 (1), 25-34, doi: 10.1113/jphysiol.2007.147629.[WoS][Crossref]
  • 9. Costill D.L., The scientific basis of long-distance training [in Polish]. Sport Wyczynowy, 1976 (11), 4-76.
  • 10. Costill D.L., Wilmore J.H., Physiology of Sport and Exercise. Human Kinetics, Champaign 1994.
  • 11. Zatoń M., Around the discussion about endurance training [in Polish]. Sport Wyczynowy, 1998, 2, 17-24.
  • 12. Żołądź J.A., Duda K., Majerczak J., Oxygen uptake does not increase linearly at high power output of incremental exercise test in humans. Eur J Appl Physiol, 1998, 77 (5), 445-451.[Crossref]
  • 13. Kubukeli Z.N., Noakes T.D., Dennis S.C., Training techniques to improve endurance exercise performances. Sports Medicine, 2002, 32 (8), 489-509, doi: 10.2165/00007256-199724050-00003.[Crossref]
  • 14. Smith D.J., A framework for understanding the training process leading to elite performance. Sports Medicine, 2003, 33 (15), 1103-1126, doi: 10.2165/00007256-200333150-00003.[Crossref]
  • 15. Chtara M., Chamari K., Chaouachi M., Chaouachi A., Koubaa D., Feki Y. et al., Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med, 2005, 39 (8), 555-560, doi: 10.1136/bjsm.2004.015248.[Crossref]
  • 16. Friedlander A.L., Jacobs K.A., Fattor J.A., Horning M.A., Hagobian T.A., Bauer T.A. et al., Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training. Am J Physiol Endocrynol Metab, 2007, 292 (1), E107-E116, doi: 10.1152/ajpendo.00148.2006.[Crossref]
  • 17. Eastwood P.R., Hillman D.R., Finucane K.E., Inspiratory muscle performance in endurance athletes and sedentary subjects. Respirology, 2001, 6 (2), 95-104, doi: 10.1046/j.1440-1843.2001.00314.x.[Crossref]
  • 18. Dorado C., Sanchis-Moysi J., Calbelt J.A., Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol, 2004, 29 (3), 227-244.[Crossref]
  • 19. Zatoń M., Bugajski A., Methods of selecting optimal parameters of interval training [in Polish]. Medycyna Sportowa, 1997, 68 (3), 21-24.
  • 20. Tabata I., Nishimura K., Kouzaki M., Hirai Y., Ogita F., Miyachi M. et al., Effects of moderate-intensity endurance and high-intensity training on anaerobic capacity and VO2max. Med Sci Sports Exerc, 1996, 28 (10), 1327-1330.[Crossref][WoS]
  • 21. McKenna M.J., Heigenhauser G.J., McKelvie R.S., Obminski G., MacDougall J.D., Jones N.L., Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men. J Physiol, 1997, 501 (3), 703-716, doi: 10.1111/j.1469-7793.1997.703bm.x.[Crossref]
  • 22. Laursen P.B., Shing C.M., Peake J.M., Coombes J.S., Jenkins D.G., Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res, 2005, 19 (3), 527-533.[WoS]
  • 23. Gibala M.J., Little J.P., Van Essen M., Wilkin G.P., Burgomaster K.A., Safdar A. et al., Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol, 2006, 575 (3), 901-911, doi: 10.1113/ jphysiol.2006.112094.[Crossref]
  • 24. Esfarjani F., Laursen P.B., Manipulating high-intensity interval training: Effects on VO2max, the lactate threshold and 3000m running performance in moderately trained males. J Sci Med Sport, 2007, 10 (1), 27-35, doi: 10.1016/j.jsams.2006.05.014.[WoS][Crossref]
  • 25. Faria E.W., Recent advances in specific training for cycling. Int SportMed J, 2009, 10 (1), 16-32.
  • 26. Krustrup P., Hellsten Y., Bangsbo J., Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but now at low intensities. J Physiol, 2004, 559 (1), 335-345, doi: 10.1113/jphysiol.2004.062232.[Crossref]
  • 27. Zavorsky G.S., Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Medicine, 2000,29(1), 13-26, doi: 10.2165/00007256-200029010-00002.[Crossref]
  • 28. Franklin B.A., Whaley M.H., Howley E.T., Balady G.J., ACSM’s guidelines for exercise testing and prescriptions. Lippincott Williams & Wilkins, Philadelphia 2000, 3-27, 57-85.
  • 29. Bertuzzi R., Nascimento E.M.F., Urso R.P., Damasceno M., Lima-Silva A.E., Energy system contributions during incremental exercise test. J Sports Sci Med, 2013, 12 (3), 454-460.
  • 30. Grant S., Corbett K., Amjad A.M., Wilson J., Aitchison T., A comparison of methods of predicting maximum oxygen uptake. Br J Sports Med, 1995, 29 (3), 147-152, doi: 10.1136/bjsm.29.3.147. [Crossref]
  • 31. Zatoń M., Hebisz R., Hebisz P., The physiological bases of training in mountain biking [in Polish]. AWF, Wrocław 2011.
  • 32. Juel C., Klarskov C., Nielsen J.J., Krustrup P., Mohr M., Bangsbo J., Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrynol Metab, 2004, 286 (2), E245-E251, doi: 10.1152/ajpendo.00303.2003.[Crossref]
  • 33. Bergman B.C., Butterfield G.E., Wolfel E.E., Casazza G.A., Lopaschuk G.D., Brooks G.A., Evaluation of exercise and training on muscle lipid metabolism. Am J Physiol Endocrinol Metab, 1999, 276 (1), E106-E117.
  • 34. Laursen P.B., Jenkins D.G., The scientific basis for highintensity interval training: optimising training programmes and maximizing performance in highly trained endurance athletes. Sports Medicine, 2002, 32 (1), 53-73, doi: 10.2165/00007256-200232010-00003.[Crossref]
  • 35. Burgomaster K.A., Howarth K.R., Phillips S.M., Rakobowchuk M., MacDonald M.J., McGee S.L. et al., Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 2008, 586 (1), 151-160, doi: 10.1113/ jphysiol.2007.142109.[Crossref][WoS]
  • 36. Burgomaster K.A., Heigenhauser G.J.F., Gibala M.J., Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time trial performance. J Appl Physiol, 2006, 100 (6), 2041-2047, doi: 10.1152/japplphysiol.01220.2005.[Crossref]
  • 37. Hazell T.J., Olver D., Hamilton C.D., Lemon P.W.R, Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. Int J Sport Nutr Exerc Metab, 2012, 22 (4), 276-283.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.