Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 16 | 1 | 36-41

Article title

Effect of Cadence on Respiratory Response During Unloaded Cycling in Healthy Individuals

Content

Title variants

Languages of publication

EN

Abstracts

EN
Purpose. The aim of the study was to establish the respiratory response to unloaded cycling at different cadences. Methods. Eleven healthy participants performed a maximal graded exercise test on a cycle ergometer to assess aerobic fitness (maximal oxygen consumption: 46.27 ± 5.41 ml · min-1 · kg-1) and eight 10-min unloaded pedaling (0 W) bouts at a constant cadence (from 40 to 110 rpm). Respiratory data were measured continuously during each effort and then averaged over 30 s. Blood samples were collected before and 2 min after each effort to monitor changes in acid-base balance. Results. The efforts were performed at an intensity of 16.5-37.5% VO2peak. Respiratory response was not differentiated in cadences of 40, 50, 60 rpm. From 70 rpm, an increase in cadence was significantly associated with increased minute ventilation (F = 168.11, p < 0.000) and oxygen consumption (F = 214.86 p < 0.000) and, from 80 rpm, respiratory frequency (F = 16.06, p < 0.001) and tidal volume (F = 54.67, p < 0.000). No significant changes in acid-base balance were observed as a result of difference cadences. Conclusions. Unloaded cycling at a cadence of 70 rpm or above has a significant effect on respiratory function and may be associated with the involvement of large muscle ergoreceptors (mechanoreceptors) stimulated by the frequency of muscle contractions.

Publisher

Journal

Year

Volume

16

Issue

1

Pages

36-41

Physical description

Dates

published
1 - 3 - 2015
accepted
13 - 1 - 2015
online
23 - 5 - 2015
received
4 - 11 - 2014

Contributors

  • University School of Physical Education, Wrocław, Poland
  • Katedra Fizjologii i Biochemii Akademia Wychowania Fizycznego al. I.J. Paderewskiego 35 51-612 Wrocław, Poland
  • University School of Physical Education, Wrocław, Poland

References

  • 1. Takaishi T., Yamamoto T., Ono T., Ito T., Moritani T., Neuromuscular, metabolic and kinetic adaptation for skilled pedaling performance in cyclists. Med Sci Sport Exerc, 1998, 30 (3), 442-449.[Crossref]
  • 2. Jameson C., Ring C., Contribution of local and central sensations of the perception of exertion during cycling: effect of work rate and cadence. J Sports Sci, 2000, 18 (4), 291-298, doi: 10.1080/026404100365027.[Crossref]
  • 3. Nickleberry Jr. B.L., Brooks G.A., No effect of cycling experience on leg cycle ergometer efficiency. Med Sci Sports Exerc, 1996, 28 (11), 1396-1401.[Crossref]
  • 4. Candotti C.T., Ribeiro J., Soares D.P., de Oliveira A.R., Loss J.F., Guimaraes A.C.S., Effective force and economy of triathletes and cyclists. Sports Biomech, 2007, 6 (1), 31-43, doi: 10.1080/14763140601058490.[WoS][Crossref]
  • 5. Dantas J.L., Smirmaul B.P., Altimari L.R., Okano A.H., Fontes E.B., Camata T.V. et al., The efficiency of pedaling and the muscular recruitment are improved with increase of the cadence in cyclists and non-cyclists. Electromyogr Clin Neurophysiol, 2009, 49 (6-7), 311-319.
  • 6. Kohl J., Koller E.A., Jäger M., Relation between pedalingand breathing rhythm. Eur J Appl Physiol, 1981, 47 (3), 223-237, doi: 10.1007/BF00422468.[Crossref]
  • 7. Garlando F., Kohl J., Koller A.E., Pietsch P., Effect of coupling the breathing- and cycling rhythms on oxygen uptake during bicycle ergometry. Eur J Appl Physiol, 1985, 54 (5), 497-501, doi: 10.1007/BF00422959.[Crossref]
  • 8. Bonsignore M.R., Morici G., Abate P., Romano S., Bonsignore G., Ventilation and entrainment of breathing during cycling and running in triathletes. Med Sci Sports Exerc, 1998, 30 (2), 239-245, doi: 10.1097/00005768-199802000-00011.[Crossref]
  • 9. Vollestad N.K., Blom P.C.S., Effect of varying exercise intensity on glycogen depletion in human muscle fibers. Acta Physiol Scand, 1985, 125 (3), 395-405, doi: 10.1111/ j.1748-1716.1985.tb07735.x.[Crossref]
  • 10. Gollnick P.D., K. Piehl K., Saltin B., Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedaling rates. J Physiol (Lond), 1974, 241 (1), 45-57, doi: 10.1113/jphysiol.1974. sp010639.[Crossref]
  • 11. Eldridge F.L., Millhorn D.E., Kiley J.P., Waldrop T.G., Stimulation by central command of locomotion, respiration and circulation during exercise. Respir Physiol, 1985, 59 (3), 313-337, doi: 10.1016/0034-5687(85)90136-7.[Crossref]
  • 12. Romaniuk J.R., Kasicki S., Kazennikov O.V., Selionov V.A., Respiratory responses to stimulation of spinal or medullary locomotor structures in decerebrate cats. Act Neurobiol Exp, 1994, 54 (1), 11-17.
  • 13. McCloskey D.I., Mitchell J.H., Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond), 1972, 224 (1), 173-186, doi: 10.1113/ jphysiol.1972.sp009887.[Crossref]
  • 14. Palisses R., Persegol L., Viala D., Viala G., Reflex modulation of phrenic activity through hindlimb passive motion in decorticate and spinal rabbit preparation. Neuroscience, 1988, 24 (2), 719-728, doi: 10.1016/0306-4522(88)90364-8.[Crossref]
  • 15. Potts J.T., Rybak I.A., Paton J.F.R., Respiratory rhythm entrainment by somatic afferent stimulation. J Neurosci, 2005, 25 (8), 1965-1978, doi: 10.1523/JNEUROSCI. 3881-04.2005.[Crossref]
  • 16. Wasserman K., Hansen J.E., Sue D.Y., Stringer W.W., Whipp B.J., Normal values. Arterial and end-tidal carbon dioxide tensions. In: Wasserman K., Hansen J.E., Sue D.Y., Stringer W., Whipp B. (eds.), Principles of exercise testing and interpretation, 4th Edition. Lippincott Williams & Wilkins, Philadelphia 2005, 42-55.
  • 17. Foss O., Hallen J., The most economical cadence increases with increasing workload. Eur J Appl Physiol, 2004, 92 (4-5), 443-451, doi: 10.1007/s00421-004-1175-5.[Crossref]
  • 18. Takano N., Effects of pedal rate on respiratory responses to incremental bicycle work. J Physiol, 1988, 396 (1), 389-397, doi: 10.1113/jphysiol.1988.sp016968.[Crossref]
  • 19. Scheuermann B.W., Kowalchuk J.M., Breathing patterns during slow and fast ramp exercise in man. Exp Physiol, 1999, 84 (1), 109-120, doi: 10.1111/j.1469-445X.1999. tb00076.x.[Crossref]
  • 20. Ahlquist L.E., Bassett Jr. D.R., Sufit R., Nagle F.J., Thomas D.P., The effect of pedaling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cycling exercise. Eur J Appl Physiol, 1992, 65 (4), 360-364, doi: 10.1007/BF00868141.[Crossref]
  • 21. Mateika J.H., Duffin J., A review of the control of breathing during exercise. Eur J Appl Physiol, 1995, 71 (1), 1-27, doi: 10.1007/BF00511228.[Crossref]
  • 22. Kalia M., Mei S.S., Kao F.F., Central projections from ergoreceptors (C fibers) in muscle involved in cardiopulmonary responses to static exercise. Circ Res, 1981, 48 (Suppl 1), 48-62.
  • 23. Schmidt H., Francis D.P., Rauchhaus M., Werdan K., Piepoli M.F., Chemo- and ergoreflexes in healthy, diseases and ageing. Int J Cardiol, 2005, 98 (3), 369-378, doi: 10.1016/j.ijcard.2004.01.002.[Crossref]
  • 24. Chapmann A.R., Vicenzino B., Blanch P., Hodges P.W., Patterns of leg muscle recruitment vary between novice and highly trained cyclists. J Electromyogr Kinesiol, 2008, 18 (3), 359-371, doi: 10.1016/j.jelekin.2005.12.007.[Crossref][WoS]
  • 25. Rouffet D.M., Mornieux G., Zameziati K., Belli A., Hautier C.A. Timing of muscle activation of the lower limbs can be modulated to maintain a constant pedaling cadence. J Electromyogr Kinesiol, 2009, 19 (6), 1100-1107, doi: 10.1016/j.jelekin.2008.11.014.[WoS][Crossref]
  • 26. Beelen A., Sargeant A.J., Effect of prior exercise at different pedaling frequencies on maximal power in humans. Eur J Appl Physiol, 1993, 66 (2), 102-107, doi: 10.1007/ BF01427049.[Crossref]
  • 27. MacIntosh B.R., Neptun R.R., Horton J.F., Cadence, power and muscle activation in cycle ergometry. Med Sci Sports Exerc, 2000, 32 (7), 1281-1287.[Crossref]
  • 28. Baum B.S., Li L., Lower extremity muscle activities during cycling are influenced by load and frequency. J Electromyogr Kinesiol, 2003, 13 (2), 181-190, doi: 10.1016/ S1050-6411(02)00110-4.[Crossref]
  • 29. Priego J.I., Bini R.R., Lanferdini F.J., Carpes F.P., Effects of workload level on muscle recruitment in cycling. Hum Mov, 2014, 15 (1), 45-50, doi: 10.2478/humo-2014-0001.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_humo-2015-0025
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.