Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Saturated fatty acids induce endoplasmic
reticulum stress in primary cardiomyocytes


Title variants

Languages of publication



Introduction: Diabetes is a major contributor to
cardiovascular disease. There is a growing body of evidence
pointing towards intra-myocellular lipid accumulation as
an integral etiological factor. Here we aimed to determine
the effect of two common fatty acids on lipid accumulation
and cellular stress in primary cardiomyocytes. Methods: We evaluated lipid accumulation biochemically
(by triacylglyceride assay and radiolabeled fatty acid
uptake assay) as well as histologically (by BODIPY 493/503
staining) in mouse and rat neonatal cardiomyocytes
treated with saturated (palmitate) or mono-unsaturated
(oleate) fatty acids. Endoplasmic reticulum (ER) stress was
evaluated by quantitative reverse transcription polymerase
chain reaction (qRT-PCR) and Western blotting. Cell
viability was assessed by propidium iodide staining. Results: We found that both oleate and palmitate
led to significant increases in intracellular lipid in
cardiomyocytes; however there were distinct differences
in the qualitative nature of BODIPY staining between
oleate and palmitate treated cardiomyocytes. We also
show that palmitate caused significant apoptotic cell
death and this was associated with ER stress. Interestingly,
co-administration of oleate with palmitate abolished cell
death, and ER stress. Finally, palmitate treatment caused
a significant increase in ubiquitination of Grp78, a key
compensatory ER chaperone. Conclusion: Palmitate causes ER stress and apoptotic cell
death in primary cardiomyocytes and this is associated
with apparent differences in BODIPY staining compared
to oleate treated cardiomyocytes. Importantly, the
lipotoxic effects of palmitate are abolished with the
co-administration of oleate.







Physical description


11 - 2 - 2015
15 - 9 - 2014
30 - 3 - 2015


  • Montreal Heart Institute,
    5000 Belanger Street, Montreal, H1T 1C8, Canada
  • Departments of Medicine,
    Université de Montréal
  • Montreal Heart Institute,
    5000 Belanger Street, Montreal, H1T 1C8, Canada
  • Montreal Heart Institute,
    5000 Belanger Street, Montreal, H1T 1C8, Canada
  • Departments of Medicine,
    Université de Montréal
  • Montreal Heart Institute,
    5000 Belanger Street, Montreal, H1T 1C8, Canada
  • Departments of Surgery, Université de Montréal


  • [1] Thrainsdottir, I. S., Aspelund, T., Thorgeirsson, G., Gudnason,V., Hardarson, T., Malmberg, K., et al. The association betweenglucose abnormalities and heart failure in the populationbasedReykjavik study, Diabetes Care. 2005, 28, 612-6.[Crossref]
  • [2] Berry, C., Brett, M., Stevenson, K., McMurray, J. J. & Norrie,J. Nature and prognostic importance of abnormal glucosetolerance and diabetes in acute heart failure, Heart. 2008, 94,296-304.[WoS]
  • [3] Jankovic, D., Winhofer, Y., Promintzer-Schifferl, M.,Wohlschlager-Krenn, E., Anderwald, C. H., Wolf, P., et al. Effectsof insulin therapy on myocardial lipid content and cardiacgeometry in patients with type-2 diabetes mellitus, PLoS One.2012, 7, e50077.[Crossref][WoS]
  • [4] Utz, W., Engeli, S., Haufe, S., Kast, P., Hermsdorf, M., Wiesner,S., et al. Myocardial steatosis, cardiac remodelling and fitnessin insulin-sensitive and insulin-resistant obese women, Heart.2011, 97, 1585-9.[WoS]
  • [5] Ng, A. C., Delgado, V., Bertini, M., van der Meer, R. W.,Rijzewijk, L. J., Hooi Ewe, S., et al. Myocardial steatosis andbiventricular strain and strain rate imaging in patients withtype 2 diabetes mellitus, Circulation. 2010, 122, 2538-44.
  • [6] Ueno, M., Suzuki, J., Zenimaru, Y., Takahashi, S., Koizumi, T.,Noriki, S., et al. Cardiac overexpression of hormone-sensitivelipase inhibits myocardial steatosis and fibrosis in streptozotocindiabetic mice, Am J Physiol Endocrinol Metab. 2008,294, E1109-18.[WoS]
  • [7] Rijzewijk, L. J., van der Meer, R. W., Smit, J. W., Diamant,M., Bax, J. J., Hammer, S., et al. Myocardial steatosis is anindependent predictor of diastolic dysfunction in type 2diabetes mellitus, J Am Coll Cardiol. 2008, 52, 1793-9.
  • [8] Sparagna, G. C., Jones, C. E. & Hickson-Bick, D. L. Attenuationof fatty acid-induced apoptosis by low-dose alcohol in neonatalrat cardiomyocytes, Am J Physiol Heart Circ Physiol. 2004, 287,H2209-15.
  • [9] Hickson-Bick, D. L., Buja, L. M. & McMillin, J. B. Palmitatemediatedalterations in the fatty acid metabolism of ratneonatal cardiac myocytes, J Mol Cell Cardiol. 2000, 32, 511-9.[Crossref]
  • [10] Kong, J. Y. & Rabkin, S. W. Reduction of palmitate-inducedcardiac apoptosis by fenofibrate, Mol Cell Biochem. 2004, 258,1-13.
  • [11] Rabkin, S. W., Huber, M. & Krystal, G. Modulation of palmitateinducedcardiomyocyte cell death by interventions that alterintracellular calcium, Prostaglandins Leukot Essent Fatty Acids.1999, 61, 195-201.
  • [12] Sparagna, G. C., Hickson-Bick, D. L., Buja, L. M. & McMillin, J.B. Fatty acid-induced apoptosis in neonatal cardiomyocytes:redox signaling, Antioxid Redox Signal. 2001, 3, 71-9.
  • [13] Borradaile, N. M., Buhman, K. K., Listenberger, L. L., Magee, C.J., Morimoto, E. T., Ory, D. S., et al. A critical role for eukaryoticelongation factor 1A-1 in lipotoxic cell death, Mol Biol Cell.2006, 17, 770-8.
  • [14] Leroy, C., Tricot, S., Lacour, B. & Grynberg, A. Protective effectof eicosapentaenoic acid on palmitate-induced apoptosis inneonatal cardiomyocytes, Biochim Biophys Acta. 2008, 1781,685-93.[WoS]
  • [15] Ostrander, D. B., Sparagna, G. C., Amoscato, A. A., McMillin, J.B. & Dowhan, W. Decreased cardiolipin synthesis correspondswith cytochrome c release in palmitate-induced cardiomyocyteapoptosis, J Biol Chem. 2001, 276, 38061-7.
  • [16] Kong, J. Y. & Rabkin, S. W. Palmitate induces structuralalterations in nuclei of cardiomyocytes, Tissue Cell. 1999, 31,473-9.
  • [17] Livak, K. J. & Schmittgen, T. D. Analysis of relative geneexpression data using real-time quantitative PCR and the2(-Delta Delta C(T)) Method, Methods. 2001, 25, 402-8.
  • [18] Miller, T. A., LeBrasseur, N. K., Cote, G. M., Trucillo, M. P.,Pimentel, D. R., Ido, Y., et al. Oleate prevents palmitate-inducedcytotoxic stress in cardiac myocytes, Biochem Biophys ResCommun. 2005, 336, 309-15.
  • [19] Borradaile, N. M., Han, X., Harp, J. D., Gale, S. E., Ory, D. S. &Schaffer, J. E. Disruption of endoplasmic reticulum structureand integrity in lipotoxic cell death, J Lipid Res. 2006, 47,2726-37.
  • [20] McGavock, J. M., Lingvay, I., Zib, I., Tillery, T., Salas, N., Unger,R., et al. Cardiac steatosis in diabetes mellitus: a 1H-magneticresonance spectroscopy study, Circulation. 2007, 116, 1170-5.[WoS]
  • [21] Korosoglou, G., Humpert, P. M., Ahrens, J., Oikonomou,D., Osman, N. F., Gitsioudis, G., et al. Left ventriculardiastolic function in type 2 diabetes mellitus is associatedwith myocardial triglyceride content but not with impairedmyocardial perfusion reserve, J Magn Reson Imaging. 2012, 35,804-11.[WoS]
  • [22] Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., etal. Aberrant lipid metabolism disrupts calcium homeostasiscausing liver endoplasmic reticulum stress in obesity, Nature.2011, 473, 528-31.[WoS]
  • [23] Kharroubi, I., Ladriere, L., Cardozo, A. K., Dogusan, Z., Cnop,M. & Eizirik, D. L. Free fatty acids and cytokines induce of nuclear factor-kappaB and endoplasmic reticulum stress,Endocrinology. 2004, 145, 5087-96.
  • [24] Wei, Y., Wang, D., Topczewski, F. & Pagliassotti, M. J. Saturatedfatty acids induce endoplasmic reticulum stress and apoptosisindependently of ceramide in liver cells, Am J PhysiolEndocrinol Metab. 2006, 291, E275-81.
  • [25] Guo, W., Wong, S., Xie, W., Lei, T. & Luo, Z. Palmitate modulatesintracellular signaling, induces endoplasmic reticulum stress,and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes,Am J Physiol Endocrinol Metab. 2007, 293, E576-86.[WoS]
  • [26] Peter, A., Weigert, C., Staiger, H., Machicao, F., Schick, F.,Machann, J., et al. Individual stearoyl-coa desaturase 1expression modulates endoplasmic reticulum stress andinflammation in human myotubes and is associated withskeletal muscle lipid storage and insulin sensitivity in vivo,Diabetes. 2009, 58, 1757-65.[WoS]
  • [27] Mayer, C. M. & Belsham, D. D. Palmitate attenuates insulinsignaling and induces endoplasmic reticulum stress andapoptosis in hypothalamic neurons: rescue of resistance andapoptosis through adenosine 5’ monophosphate-activatedprotein kinase activation, Endocrinology. 2010, 151, 576-85.[WoS]
  • [28] Ishiyama, J., Taguchi, R., Akasaka, Y., Shibata, S., Ito, M.,Nagasawa, M., et al. Unsaturated FAs prevent palmitateinducedLOX-1 induction via inhibition of ER stress inmacrophages, J Lipid Res. 2011, 52, 299-307.
  • [29] Chaube, R., Kallakunta, V. M., Espey, M. G., McLarty,R., Faccenda, A., Ananvoranich, S., et al. Endoplasmicreticulum stress-mediated inhibition of NSMase2 elevatesplasma membrane cholesterol and attenuates NOproduction in endothelial cells, Biochim Biophys Acta.2012, 1821, 313-23.
  • [30] Wu, T., Dong, Z., Geng, J., Sun, Y., Liu, G., Kang, W., et al.Valsartan protects against ER stress-induced myocardialapoptosis via CHOP/Puma signaling pathway in streptozotocininduceddiabetic rats, Eur J Pharm Sci. 2011, 42, 496-502.
  • [31] Li, J., Zhu, H., Shen, E., Wan, L., Arnold, J. M. & Peng, T.Deficiency of rac1 blocks NADPH oxidase activation, inhibitsendoplasmic reticulum stress, and reduces myocardialremodeling in a mouse model of type 1 diabetes, Diabetes.2010, 59, 2033-42.
  • [32] Xu, J., Wang, G., Wang, Y., Liu, Q., Xu, W., Tan, Y., et al.Diabetes- and angiotensin II-induced cardiac endoplasmicreticulum stress and cell death: metallothionein protection, JCell Mol Med. 2009, 13, 1499-512.[WoS][Crossref]
  • [33] Yoshida, I., Monji, A., Tashiro, K., Nakamura, K., Inoue, R. &Kanba, S. Depletion of intracellular Ca2+ store itself may be amajor factor in thapsigargin-induced ER stress and apoptosis inPC12 cells, Neurochem Int. 2006, 48, 696-702.
  • [34] Wang, X. Z., Lawson, B., Brewer, J. W., Zinszner, H., Sanjay, A.,Mi, L. J., et al. Signals from the stressed endoplasmic reticuluminduce C/EBP-homologous protein (CHOP/GADD153), Mol CellBiol. 1996, 16, 4273-80.
  • [35] Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi,M., et al. ATF6 activated by proteolysis binds in the presence ofNF-Y (CBF) directly to the cis-acting element responsible for themammalian unfolded protein response, Mol Cell Biol. 2000, 20,6755-67.[Crossref]
  • [36] Han, X. J., Chae, J. K., Lee, M. J., You, K. R., Lee, B. H. & Kim, D.G. Involvement of GADD153 and cardiac ankyrin repeat proteinin hypoxia-induced apoptosis of H9c2 cells, J Biol Chem. 2005,280, 23122-9.
  • [37] Fu, H. Y., Okada, K., Liao, Y., Tsukamoto, O., Isomura, T., Asai,M., et al. Ablation of C/EBP homologous protein attenuatesendoplasmic reticulum-mediated apoptosis and cardiacdysfunction induced by pressure overload, Circulation 122,361-9.[WoS]
  • [38] McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y.& Holbrook, N. J. Gadd153 sensitizes cells to endoplasmicreticulum stress by down-regulating Bcl2 and perturbing thecellular redox state, Mol Cell Biol. 2001, 21, 1249-59.
  • [39] Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmicreticulum stress-induced apoptosis by enhancing DR5expression in human carcinoma cells, J Biol Chem. 2004, 279,45495-502.
  • [40] Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese, R. V.,Jr., Ory, D. S., et al. Triglyceride accumulation protects againstfatty acid-induced lipotoxicity, Proc Natl Acad Sci U S A. 2003,100, 3077-82.
  • [41] Henique, C., Mansouri, A., Fumey, G., Lenoir, V., Girard, J.,Bouillaud, F., et al. Increased mitochondrial fatty acid oxidationis sufficient to protect skeletal muscle cells from palmitateinducedapoptosis, J Biol Chem. 2010, 285, 36818-27.
  • [42] Suzuki, T., Lu, J., Zahed, M., Kita, K. & Suzuki, N. Reductionof GRP78 expression with siRNA activates unfolded proteinresponse leading to apoptosis in HeLa cells, Arch BiochemBiophys. 2007, 468, 1-14.
  • [43] Wey, S., Luo, B. & Lee, A. S. Acute inducible ablation of GRP78reveals its role in hematopoietic stem cell survival, lymphogenesisand regulation of stress signaling, PLoS One. 2012, 7, e39047.
  • [44] Suyama, K., Watanabe, M., Sakabe, K., Okada, Y., Matsuyama,D., Kuroiwa, M., et al. Overexpression of GRP78 protects glialcells from endoplasmic reticulum stress, Neurosci Lett. 2011,504, 271-6.
  • [45] Gu, X., Li, K., Laybutt, D. R., He, M. L., Zhao, H. L., Chan, J. C.,et al. Bip overexpression, but not CHOP inhibition, attenuatesfatty-acid-induced endoplasmic reticulum stress and apoptosisin HepG2 liver cells, Life Sci. 2010, 87, 724-32.
  • [46] Masuoka, H. C., Mott, J., Bronk, S. F., Werneburg, N. W.,Akazawa, Y., Kaufmann, S. H., et al. Mcl-1 degradation duringhepatocyte lipoapoptosis, J Biol Chem. 2009, 284, 30039-48. [WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.