Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 22 | 3 | 451-458

Article title

A Voltammetric Technique Using A Modified Carbon Paste Electrode For The Determination Of Aclonifen


Title variants


Languages of publication



A method for the determination of aclonifen at a carbon paste electrode modified with tricresyl phosphate has been developed. The optimum electrochemical regime proved to be differential pulse voltammetry (DPV) in the negative potential range from −200 to −1600 mV. The optimum pH for the determination proved to be pH = 8. The calibration dependence is linear and the limit of detection achieved for the method was 2·10−6 mol/dm3. The method is fast, reliable and it is suitable for the detection of aclonifen in the concentration range from 2·10−6 to 1·10−4 mol/dm3.









Physical description


1 - 9 - 2015
5 - 10 - 2015


  • Institute for Nanomaterials, Advanced Technology and Innovation, Bendlova 1407/7, 461 17 Liberec, Czech Republic, phone +420485353876
  • Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Faculty of Science, Charles University of Prague, Hlavova 2030, Praha 2, Czech Republic
  • Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Faculty of Science, Charles University of Prague, Hlavova 2030, Praha 2, Czech Republic


  • [1] Choi JS, Lee HJ, Hwang IT, Pyon JY, Cho KY. Differential susceptibilities of wheat and barley to diphenyl ether herbicide oxyfluorfen. Pestic Biochem Physiol. 1999;65(1):62-72. DOI: 10.1006/pest.1999.2429.[Crossref]
  • [2] Graham MY. The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol. 2005;139(4):1784-1794. DOI: 10.1104/pp.105.068676.[Crossref]
  • [3] Kilinc O, Reynaud S, Perez L, Tissut M, Ravanel P. Physiological and biochemical modes of action of the diphenylether aclonifen. Pestic Biochem Physiol. 2009;93:65-71. DOI: 10.1016/j.pestbp.2008.11.008.[WoS][Crossref]
  • [4] Francis BM, Metcalf RL, Lewis PA, Chernoff N. Maternal and developmental toxicity of halogenated 4′-nitrodiphenyl ethers in mice. Teratology. 1999;59:69-80. DOI: 10.1002/(SICI)1096-9926(199902)59:2.[Crossref]
  • [5] Hong C-C, Shimomura-Shimizu M, Muroi M, Tanamoto K-I. Effect of endocrine disrupting chemicals on lipopolysaccharide-induced tumor necrosis factor-a and nitric oxide production by mouse macrophages. Biol Pharmacol Bull. 2004;27(7):1136-1139.[Crossref]
  • [6] Mastorakos G, Karoutsou EI, Mizamtsidi M, Creatsas G. The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine. 2007;31:219-237. DOI: 10.1007/s12020-007-0030-y.[Crossref][WoS][PubMed]
  • [7] Draper WM, Casida JE. Diphenyl ether herbicides and related compounds: structure-activity relationships as bacterial mutagens. J Agric Food Chem. 1983;31:1201-1207. DOI: 10.1021/jf00120a015.[PubMed][Crossref]
  • [8] Milman HA, Ward JM, Chu KC. Pancreatic carcinogenesis and naturally occurring pancreatic neoplasms of rats and mice in the NCI carcinogenesis testing program. J Environ Pathol Toxicol Oncol. 1978: 829-840.
  • [9] Vischetti C, Marucchini C, Leita L, Cantone P, Danuso F, Giovanardi R. Behaviour of two sunflower herbicides (metobromuron, aclonifen) in soil. Eur J Agronomy. 2002;16:231-238. DOI: 10.1016/S1161-0301(01)00136-8.[Crossref]
  • [10] Trevisan M, Capri E, Cella A, Errera G, Sicbaldi F. Field, laboratory and modelling studies to evaluate Aclonifen soil fate. Toxicol Environ Chem. 1999;70:29-47. DOI: 10.1080/02772249909358737.[Crossref]
  • [11] Covarelli L, Tosi L. Presence of sunflower downy mildew in an integrated weed control field trial. J Phytopathol. 2006;154:281-285. DOI: 10.1111/j.1439-0434.2006.01094.x.[Crossref]
  • [12] Fischer J, Dejmkova H, Barek J. Electrochemistry of pesticides and its analytical applications. Current Organic Chem. 2011;15:2923-2935. DOI: 10.2174/138527211798357146.[Crossref]
  • [13] Dordevic J, Papp Z, Guzsvány V, Švancara I, Trtic-Petrovic T, Purenovic M, et al. Voltammetric determination of the herbicide linuron using a tricresyl phosphate-based carbon paste electrode. Sensors. 2012;12(1):148-161.[Crossref]
  • [14] Tatsumi H, Shiba M. Polarography with a dropping carbon electrode. Electrochem Commun. 2012;20(0):160-162. DOI: 10.1016/j.elecom.2012.04.021.[WoS][Crossref]
  • [15] Svancara I, Vytras K. Voltammetry with carbon paste electrodes containing membrane plasticizers used for PVC-based ion-selective electrodes. Anal Chim Acta. 1993;273:195-204. DOI: 10.1016/0003-2670(93)80158-H.[Crossref]
  • [16] Svancara I, Hvizdalova M, Vytras K, Kalcher K, Novotny R. A microscopic study on carbon paste electrodes. Electroanalysis. 1996;8(1):61-65 DOI: 10.1002/elan.1140080113.[Crossref]
  • [17] Zarbin A. Nanomaterials chemistry. Quim Nova. 2007;30(6):1469-1479. DOI: 10.1590/S0100-40422007000600016.[Crossref]
  • [18] Nemcova L, Barek J, Zima J. A voltammetric comparison of the properties of carbon paste electrodes containing glassy carbon microparticles of various sizes. J Electroanal Chem. 2012;675(0):18-24. DOI: 10.1016/j.jelechem.2012.04.019.
  • [19] Apetrei C, Apetrei IM, De Saja JA, Rodriguez-Mendez ML. Carbon paste electrodes made from different carbonaceous materials: Application in the study of antioxidants. Sensors (Basel, Switzerland). 2011;11(2):1328-1344.[WoS][Crossref]
  • [20] Dejmkova H, Zima J, Barek J, Mika J. Behavior of glassy carbon paste electrode in flowing methanolic solutions. Electroanalysis. 2012;24(8):1766-1770. DOI: 10.1002/elan.201100598.[WoS][Crossref]
  • [21] Tian Y, Han S, Hu L, Yuan Y, Wang J, Xu G. Cathodic electrochemiluminescence and reversible electrochemistry of [Ru(bpy)3]2+/1+ in aqueous solutions on tricresyl phosphate-based carbon paste electrode with extremely high hydrogen evolution potential. Anal Bioanal Chem. 2013;405(11):3427-3430. DOI: 10.1007/s00216-012-6032-5.[Crossref][WoS]
  • [22] Svancara I, Vytras K, Barek J, Zima J. Carbon paste electrodes in modern electroanalysis. Crit Rev Anal Chem. 2001;31(4):311-346. DOI: 10.1080/20014091076785.[Crossref]
  • [23] Soltani N, Haddadi H, Asgari M, Semnani A. Stripping voltammetric detection of thorium on the oxine modified carbon paste electrode. J Radioanal Nucl Chem. 2015;304(2):603-607. DOI: 10.1007/s10967-014-3837-z.[Crossref]
  • [24] Soltani N, Tavakkoli N, Ahmadi N, Davar F. Simultaneous determination of acetaminophen, dopamine and ascorbic acid using a PbS nanoparticles Schiff base-modified carbon paste electrode. Comptes Rendus Chimie. 2015;18(4):438-448. DOI: 10.1016/j.crci.2014.07.001.[WoS][Crossref]
  • [25] Ibrahim H, Temerk Y. Novel sensor for sensitive electrochemical determination of luteolin based on In2O3 nanoparticles modified glassy carbon paste electrode. Sensors and Actuators B: Chemical. 2015;206(0):744-752. DOI: 10.1016/j.snb.2014.09.011.
  • [26] Aigner M, Telsnig D, Kalcher K, Teubl C, Macheroux P, Wallner S, et al. Amperometric biosensor for total monoamines using a glassy carbon paste electrode modified with human monoamine oxidase B and manganese dioxide particles. Microchim Acta. 2015;182(5-6):925-931. DOI: 10.1007/s00604-014-1404-5.[Crossref]
  • [27] Rivas GA, Rubianes MD, Pedano ML, Ferreyra NF, Luque GL, Rodríguez MC, et al. Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis. 2007;19(7-8):823-831. DOI: 10.1002/elan.200603778.[WoS][Crossref]
  • [28] Sestakova I, Kopanica M, Havran L, Palecek E. Constant current chronopotentiometric stripping analysis of cd-metallothionein on carbon and mercury electrodes. comparison with voltammetry. Electroanalysis. 2000;12(2):100-104. DOI: 10.1002/(SICI)1521-4109(200002).[Crossref]
  • [29] Xu G, Dong S. Electrochemiluminescence of the Ru(bpy)32+/S2O82− system in purely aqueous solution at carbon paste electrode. Electroanalysis. 2000;12(8):583-587. DOI: 10.1002/(SICI)1521-4109(200005).[Crossref]
  • [30] Hayashi Y, Matsuda R, Ito K, Nishimura W, Imai K, Maeda M. Detection limit estimated from slope of calibration curve: An application to competitive ELISA. Anal Sci. 2005;21:167-169. DOI: 10.2116/analsci.21.167.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.