Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 22 | 3 | 439-450

Article title

Effects Of Herbicides And Fungicides On The Soil Chitinolytic Activity. A Molecular Docking Approach


Title variants


Languages of publication



A molecular docking study was undertaken using the programs SwissDock and PatchDock to assess the interactions of the bacterial chitinases belonging to the GH18 and GH19 families with two herbicides (chlorsulfuron and nicosulfuron) and two fungicides (difenoconazole and drazoxolon). Both molecular docking programs predict that all considered pesticides bind to the active sites of chitinases produced by soil microorganisms. There are correlations for predicted binding energy values for receptor-ligand complexes obtained using the two programs consolidating the prediction of the chitinases-pesticides interactions. The interactions of chitinases with pesticides involve the same residues as their interactions with known inhibitors suggesting the inhibitory potential of pesticides. Pesticides interact stronger with chitinases belonging to the GH18 family, their active sites reflecting higher polarity than those of the GH19 chitinases. Also, herbicides reveal a higher inhibitory potential to bacterial chitinases than fungicides.









Physical description


1 - 9 - 2015
5 - 10 - 2015


  • Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300315 Timisoara, Environmental Advanced Researches Laboratories, Oituz 4, 300086 Timisoara, Romania
  • Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300315 Timisoara, Environmental Advanced Researches Laboratories, Oituz 4, 300086 Timisoara, Romania
  • Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300315 Timisoara, Environmental Advanced Researches Laboratories, Oituz 4, 300086 Timisoara, Romania
  • Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300315 Timisoara, Environmental Advanced Researches Laboratories, Oituz 4, 300086 Timisoara, Romania


  • [1] Carriger JF, Rand GM, Gardinali PR, Perry WB, Tompkins MS, Fernandez AM. Pesticides of potential ecological concern in sediment from South Florida Canals: An ecological risk prioritization for aquatic arthropods. Soil Sediment Contam. 2006;15:21-45. DOI: 10.1080/15320380500363095.[Crossref]
  • [2] Hussain S, Siddique T, Saleem M, Arshad M, Khalid A. Impact of pesticides on soil microbial diversity, enzymes and biochemical reactions. Adv Agron. 2009;102:159-200. DOI: 10.1016/S0065-2113(09)01005-0.[WoS][Crossref]
  • [3] Hussain S, Arshad M, Saleem M, Khalid A. Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation. 2007;18:731-740. DOI 10.1007/s10532-007-9102-1.[WoS][Crossref]
  • [4] Hussain S, Arshad M, Saleem M, Zahir Z.A. Screening of soil fungi for in vitro degradation of endosulfan. World J Microbiol Biotechnol. 2007;23:939-945. DOI 10.1007/s11274-006-9317-z.[WoS][Crossref]
  • [5] Megharaj M, Boul HL, Thiele JH. Effects of DDT and its metabolites onsoil algae and enzymatic activity. Biol Fertil Soils. 1999;29:130-134. .[Crossref]
  • [6] Whalen JK. Managing soil biota-mediated decomposition and nutrient mineralization in sustainable agroecosystems. Adv Agron. 2010; ID 384604. DOI: 10.1155/2014/384604.[Crossref]
  • [7] Bandick AK, Dick RP. Field management effects on enzyme activities. Soil Biol Biochem. 1999;31:1471-1479. DOI: 10.1016/S0038-0717(99)00051-6.[Crossref]
  • [8] MacDonald AG, Tipton KF. Fifty-five years of enzyme classification: advances and difficulties. FEBS Journal. 2014;281:583-592. DOI: 10.1111/febs.12530.[Crossref][WoS]
  • [9] van Alten DMF, Komander D, Synstad B, Gaseidnes S, Peter MG, Eijsink VGF. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA. 2001;98:8979-8984. DOI: 10.1073/pnas.151103798.[Crossref]
  • [10] Brás N, Cerqueira N, Ramos MJ, Fernandes PA. Glycosidases - A Mechanistic Overview. In: Chuan-Fa Chang, editor. Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology. Rijeka: InTech; 2012; 117-134. DOI: 10.5772/52019.[Crossref]
  • [11] Harman GE, Hayes CK, Lorito M, Broadway RM, diPietro A, Peterbauer C, Tronsmo A, Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Mol Plant Pathol. 1993;83:313-318. .
  • [12] Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol. 2013;4:143. DOI: 10.3389/fmicb.2013.00149.[WoS][Crossref]
  • [13] Kielak AM, Cretoiu MS, Semenov AV, Sorensen SJ, van Elsas JD. Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl Environ Microbiol. 2013;79:263-272. DOI: 10.1128/AEM.02546-12.[Crossref][WoS]
  • [14] Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S. Chitinases: An update. J Pharm BioAllied Sci. 2013;5:21-29. DOI: 10.4103/0975-7406.106559.[Crossref]
  • [15] Metcalfe AC, Krsek M, Gooday GW, Prosser JI, Wellington EMH. Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol. 2002;68:5042-5050. DOI: 10.1128/AEM.68.10.5042-5050.2002.[Crossref]
  • [16] Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem. 2002;66:1075-1083. DOI: 10.1271/bbb.66.1075.[Crossref]
  • [17] Sato Y, Araki Y. Identification of inducers for chitinase B (ChiB) production in Bacillus cereus CH and estimation of its induction mechanism. J Environ Biotechnol. 2008;8:119-121. .
  • [18] Lombard V, Golaconda RH, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490-D495. DOI: 10.1093/nar/gkt1178.[Crossref][WoS]
  • [19] Hsieh YC, Wu YJ, Chiang TY, Kuo CY, Shrestha KL, Chao CF, et al. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase without chitin binding and insertion domains. J Biol Chem. 2010;285:31603-31615. DOI: 10.1074/jbc.M110.149310.[WoS][Crossref]
  • [20] Van Aalten DMF, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VGH, et al. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-Å resolution. Proc Natl Acad Sci USA. 2000;97:5842-5847. DOI: 10.1073/pnas.97.11.5842.[Crossref]
  • [21] Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, Petratos K. High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40:11338-11343. DOI: 10.1021/bi010505h.[Crossref]
  • [22] Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T, et al. Structural studies of a two-domain chitinase from Streptomyces griseus HUT6037. J Mol Biol. 2006;358:472-484. DOI: 10.1016/j.jmb.2006.02.013.[Crossref]
  • [23] Howell VM, Cardinal JW, Richardson AL, Gimm O, Robinson BG, Marsh DJ. Rapid mutation screening for HRPT2 and MEN1 mutations associated with familial and sporadic primary hyperparathyroidism. J Mol Diagn. 2006;8:559-566. DOI: 10.2353/jmoldx.2006.060015.[Crossref]
  • [24] Suzuki S, Nakanishi E, Ohira T, Kawachi R, Nagasawa H, Sakuda S. Chitinase inhibitor allosamidin is a signal molecule for chitinase production in its producing streptomyces. J Antibiot. 2006:59;402-409. DOI: 10.1038/ja.2006.57.[Crossref]
  • [25] Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, et al. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem Biol. 2005;12:65-76. DOI: 10.1016/j.chembiol.2004.10.013.[Crossref]
  • [26] Saguez J, Vincent C, Giordanengo P. Chitinase inhibitors and chitin mimetics for crop protection. Pest Technol. 2008;2:81-86.
  • [27] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235-240. .[Crossref]
  • [28] MacDonald JM, Tarling CA, Taylor EJ, Dennis RJ, Myers DS, Knapp S, et al. Chitinase inhibition by chitobiose and chitotriose thiazolines. Angew Chem Int Ed Engl. 2010;49:2599-2602. DOI: 10.1002/anie.200906644.[Crossref]
  • [29] Van Aalten DMF, Komander D, Synstad B, Gseidnes S, Peter MG, Eijsink VGH. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA. 2001;98:8979-8984. DOI:10.1073/pnas.151103798.[Crossref]
  • [30] Kolstad G, Synstad B, Eijsink VGH, Van Aalten DMF. Structure of the D140N mutant of chitinase B from Serratia marcescens at 1.45 Å resolution. Acta Crystallogr D Biol Crystallogr. 2002;58:377-379. DOI: 10.1107/S0907444901018972.[Crossref]
  • [31] Vaaje-Kolstad G, Houston DR, Rao FV, Peter MG, Synstad B, Van Aalten DMF, et al. Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochim Biophys Acta. 2004;1696:103-111. DOI:10.1016/j.bbapap.2003.09.014.[Crossref]
  • [32] Vaaje-Kolstad G, Vasella A, Peter MG, Netter C, Houston DR, Westereng B, et al. Interactions of a family 18 chitinase with the designed inhibitor HM508 and its degradation product, chitobiono-delta-lactone. J Biol Chem. 2004; 279:3612-3619. DOI 10.1074/jbc.M310057200.[Crossref]
  • [33] Houston DR, Synstad B, Eijsink VGH, Stark MJ, Eggleston I, Van Aalten DMF. Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem. 2004;47:5713-5720. DOI: 10.1021/jm049940a.[Crossref]
  • [34] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greeblatt DM, Meng EC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-1612. DOI: 10.1002/jcc.20084.[Crossref]
  • [35] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. ClustalW and ClustalX version 2.0. BMC Bioinf. 2007;23:2947-2948. DOI: 10.1093/bioinformatics/btm404.[Crossref]
  • [36] Marti-Renon MA, Capriotti E, Shindyalov IN, Bourne PE. Structure Comparison and Alignment. In: Gu J, Bourne PE, editors. Structural Bioinformatics. Hoboken, New Jersey: John Wiley & Sons; 2009. .
  • [37] Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinf. 2009;10:168. DOI:10.1186/1471-2105-10-168.[Crossref]
  • [38] Irwin JJ, Shoichet BK. Zinc - a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177-182. DOI: 10.1021/ci049714.[Crossref]
  • [39] Grosdidier A, Zoete V, Michielin O. SwissDock - a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270-W277. DOI:10.1093/nar/gkr366.[WoS][Crossref]
  • [40] Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33:W363-367. DOI:10.1093/nar/gki481.[Crossref]
  • [41] Grosdidier A, Zoete V, Michielin O. EADock: A multiobjective evolutionary framework for the docking of small molecules into protein active site. Proteins: Struct Funct Bioinf. 2007;67:1010-1025. DOI: 10.1002/prot.21367.[Crossref]
  • [42] Andrusier N, Nussinov R, Wolfson HJ. FireDock: fast interaction refinement in molecular docking. Proteins. 2007;69:139-59. DOI: 10.1002/prot.21495.[Crossref]
  • [43] Firoz A, Malik A, Afzal O, Jha V. ContPro: A web tool for calculating amino acid contact distances in protein from 3D-structures at different distance threshold. Bioinformation. 2010;5:55-57. .
  • [44] Vlădoiu DL, Filimon MN, Ostafe V, Isvoran A. Assessment of pesticides interactions with Bacillus pasteurii urease. A computational study. Rom J Phys. 2015;60:583-592. .
  • [45] Singh G, Wright D. Effect of herbicides on nodulation, symbiotic nitrogen fixation, growth and yield of pea (Pisum sativum). J Agric Sci. 1999;133:21-30. DOI: 10.1017/S0021859699006735.[Crossref]
  • [46] Ismail BS, Jokha Y, Omar O. Effects of glufosinate-ammonium on microbial population and enzyme activities in soils. Microbios. 1995;83:185-190.
  • [47] Filimon MN, Voia SO, Popescu R, Bordean DM, Vladoiu DL, Mituletu M, et al. The effect of chlorsulfuron and MCPB-Na on the enzymatic activity of microorganisms. J Serb Chem Soc. 2014;79:1075-1084. DOI: 10.2298/JSC140115031F.[Crossref][WoS]
  • [48] Antonious GF. Impact of soil management and two botanical insecticides on urease and invertase activity. J Environ Sci Health B. 2003;38:479-488. DOI: 10.1081/PFC-120021667.[Crossref]
  • [49] Demanou J, Monkiedje A, Njine T, Foto SM, Nola M, Serges H, et al. Changes in soil chemical properties and microbial activities in response to the fungicide Ridomil gold plus copper. Int J Environ Res Public Health. 2004;1:26-34. DOI: 10.3390/ijerph2004010026.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.