Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 22 | 3 | 363-378

Article title

Concentration Changes Of PM10 Under Liquid Precipitation Conditions


Title variants


Languages of publication



This study reports the results of field research into variability of the scavenging coefficient (Λ) of suspended dust comprising particles with aerodynamic diameters less than 10 mm. Registration of PM10 over 7 years in conditions of the occurrence of rainfall (convective light showers, large-scale precipitation and storms) was undertaken in an undeveloped rural area. The analysis involved 806 observations taken at constant time intervals of 0.5 hour. The measurements of the concentration of PM10 were performed by means of a reference method accompanied by concurrent registration of basic meteorological parameters. It was found that, for PM10, the scavenging efficiency is considerably influenced by rainfall intensity R and the type of precipitation. In the case of convective precipitation, data on Λ are only partially related to “classical approach” of rain scavenging. Within the range of comparable values of rainfall intensity, the type of wet deposition (except for storms) does not influence the effectiveness of scavenging PM10 from the ground-level zone. The large number of observations conducted in real-time conditions yielded a proposal of simple regression model, which can be deemed suitable for the description of variability Λ (DPM10), but only to a limited extent for large-scale precipitation. The collected results can be applied in air pollution dispersion models and deposition and were found to be generally representative for areas with similar climatic characteristics.









Physical description


1 - 9 - 2015
5 - 10 - 2015


  • Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, ul. S. Mikołajczyka 5, 45-271 Opole, Poland, phone +48 77 449 84 57, fax +48 77 449 99 24


  • [1] Connan O, Maro D, Hebert D, Roubsard P, Goujon R, Lettelier B et al. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos Environ. 2013;67:394-403. DOI: 10.1016/j.atmosenv.2012.11.029.[WoS][Crossref]
  • [2] Santachiara G, Prodi F, Belosi F. Atmospheric aerosol scavenging processes and the role of thermo- and diffusio-phoretic forces. Atmos Res. 2013;128:46-56. DOI: 10.1016/j.atmosres.2013.03.004.[WoS][Crossref]
  • [3] Goncalves FF, Massambani O, Beheng KD, Vautz SW, Solci MC, Rocha V, et al. Modelling and measurements of below cloud scavenging processes in the highly industrialised region of Cubatao-Brazil. Atmos Environ. 2000;34:4113-4120. PII: S 1352-2310 (99) 00503-8.[Crossref]
  • [4] Chate DM, Rao P, Naik M, Momin G, Safai P, Ali K. Scavenging of aerosols and their chemical species by rain. Atmos Environ. 2003;37:2477-2484. DOI: 10.1016/S1352-2310(03)00162-6.[Crossref]
  • [5] Bae SY, Jung CH, Kim YP. Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method. Aerosol Sci. 2006;37:1507-1519. DOI: 10.1016/j.jaerosci.2006.02.003.[Crossref]
  • [6] Kim J-E, Han Y-J, Kim P-R, Holsen TM. Factors influencing atmospheric wet deposition of trace elements in rural Korea. Atmos Res. 2012;116:185-194. DOI: 10.1016/j.atmosres.2012.04.013.[Crossref]
  • [7] Zhao H, Zheng C. Monte Carlo solution of wet removal of aerosols by precipitation. Atmos Environ. 2006;40:1510-1525. DOI: 10.1016/j.atmosenv.2005.10.043.[Crossref]
  • [8] Chate DM, Murugavel P, Ali K, Tiwari S, Beig G. Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos Res. 2011;99:528-536. DOI: 10.1016/j.atmosres.2010.12.010.[WoS][Crossref]
  • [9] Feng J. 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmos Environ. 2007;41:6808-6822. DOI: 10.1016/j.atmosenv.2007.04.046.[WoS][Crossref]
  • [10] Wang PK, Pruppacher HR. On the efficiency with which aerosol particles of radius less than 1 μm are collected by columnar ice crystals. Pure Appl Geophys. 1980;118:1090-1108.
  • [11] Pruppacher HR, Klett JD. Microphysics of Clouds and Precipitation. Second edition. Norwell, Massachusetts: Kluwer Academic; 1997.
  • [12] Bae SY, Jung CH, Kim YP. Relative contributions of individual phoretic effect in the below-cloud scavenging process. Aerosol Sci. 2009;40:621-632. DOI: 10.1016/j.jaerosci.2009.03.003.[WoS][Crossref]
  • [13] Andronache C. Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles. Aerosol Sci. 2004;35:1467-1482. DOI: 10.1016/j.jaerosci.2004.07.005.[Crossref]
  • [14] Tinsley BA, Rohrbaugh RP, Hei M. Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos Res. 2001;59-60:115-135. PII: S0169-8095(01)00112-0.
  • [15] Chate DM. Study of scavenging of submicron-sized aerosol particles by thunderstorm rain events. Atmos Environ. 2005;39:6608-6619. DOI: 10.1016/j.atmosenv.2005.07.063.[Crossref]
  • [16] Radke LF, Hobbs PV, Eltgroth MW. Scavenging of aerosol particles by precipitation. J Appl Meteorol. 1980;19:715-722.[Crossref]
  • [17] ENVIRON. User’s guide comprehensive ai rquality mode lwith extensions (CAMx) version 4.50. Novato, USA: Environ International Corporation, 2008.
  • [18] SAI. User’s guide to the regional modeling system for aerosols and deposition (REMSAD) version 8. San Rafael, California, USA: Systems Applications International; 2005.
  • [19] Andronache C, Gronholm T, Laakso L, Phillips V, Venalainen A. Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations. Atmos Chem Phys. 2006;6:4739-4754. DOI: 10.5194/acp-6-4739-2006.[Crossref]
  • [20] Bae SY, Jung CH, Kim YP. Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment 41 (2010). J Aerosol Sci. 2010;41:266-280. DOI: 10.1016/j.jaerosci.2009.11.006.[WoS][Crossref]
  • [21] Mircea M, Stefan S, Fuzzi S. Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions. Atmos Environ. 2000;34:5169-5174. DOI: 10.1016/S1352-2310(00)00199-0.[Crossref]
  • [22] Andronache C. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos Chem Phys. 2003;3:131-143. .[Crossref]
  • [23] Jung CH, Kim YP, Lee KW. A moment model for simulating raindrop scavenging of particles. J Aerosol Sci. 2003;34:1217-1233. DOI: 10.1016/S0021-8502(03)00098-3.[Crossref]
  • [24] Loosmore GA, Cederwall RT. Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmos Environ. 2004;38:993-1003. DOI: 10.1016/j.atmosenv.2003.10.055.[Crossref]
  • [25] Zhang L, Michelangeli DV, Taylor PA. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos Environ. 2004;38:4653-4665. DOI: 10.1016/j.atmosenv.2004.05.042.[Crossref]
  • [26] Shukla JB, Sundar S, Misra AK, Naresh, R. Modelling the removal of gaseous pollutants and particulate matters from the atmosphere of a city by rain: Effect of cloud. Environ Model Assess. 2008;13:255-263. DOI: 10.1007/s10666-007-9085-7.[Crossref][WoS]
  • [27] Laakso L, Gronholm T, Rannik U, Kosmale M, Fiedler V, Vehkamaki H, et al. Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos Environ. 2003;37:3605-3613. DOI: 10.1016/S1352-2310(03)00326-1.
  • [28] Tai APK, Mickley LJ, Jacob DJ. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos Environ. 2010;44:3976-3984. DOI: 10.1016/j.atmosenv.2010.06.060.[Crossref][WoS]
  • [29] Davenport HM, Peter LK. Field studies of atmospheric particulates concentration changes during precipitation. Atmos Environ. 1978;12:997-1008.[Crossref]
  • [30] Schumann T. Large discrepancies between theoretical and field-determined scavenging coefficients. J Aerosol Sci. 1989;20:1159-1162.[Crossref]
  • [31] Maria SS, Russell LM. Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ Sci Tech. 2005;39(13):4793-4800. DOI: 10.1021/es0491679.[Crossref]
  • [32] Jylha K. Assessing precipitation scavenging of air pollutants by using weather radar. Phys Chem Earth PT B. 2000;25:1085-1089. PII-S1464-1909(00)00157-X.[Crossref]
  • [33] Chate DM, Pranesha TS. Field studies of scavenging of aerosols by rain events. Aerosol Sci. 2004;35:695-706. DOI: 10.1016/j.jaerosci.2003.09.007.[Crossref]
  • [34] Zhang X, Huang Y, Rao R. Aerosol characteristics including fumigation effect under weak precipitation over the southeastern coast of China. J Atmos Sol-Terr Phys. 2012;84-85:25-36. DOI: 10.1016/j.jastp.2012.05.005.[Crossref][WoS]
  • [35] Castro A, Alonso-Blanco E, González-Colino M, Calvo A, Fernández-Raga M, Fraile R. Aerosol size distribution in precipitation events in León, Spain. Atmos Res. 2010;96:421-435. DOI: 10.1016/j.atmosres.2010.01.014.[Crossref]
  • [36] 12341:1999, BS EN. Air quality. Determination of the PM10 fraction of suspended particulate matter. Reference method and field test procedure to demonstrate reference equivalence of measurement methods. 1999.
  • [37] EC Working Group on Guidance for the Demonstration. Guide to the demonstration of equivalence of ambient air monitoring methods. Brussels: European Council Raports, 2000.
  • [38] Sinkevich AA, Dovgalyuk YA, Ishenko MA, Ponomarev YF, Stepanenko VD, Veremei NE. Investigations of aerosol scavenging efficiency by precipitation. Nucleation and Atmospheric Aerosols. 15th Int Conf AIP Conf Pro 2000;1:534-538. .
  • [39] Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley, 1998.
  • [40] Hameed S, Sperber K. Estimates of the sulfate scavenging coefficient from sequential precipitation samples on Long Island. Tellus. 1986;388:11833-11839.
  • [41] Paramonov M, Virkula A, Grönholm T, Göke S, Laakso L. Below-cloud scavenging of aerosol particles by snow at an urban site in Finland. Internati Aerosol Conf. Helsinki August 29-September, 2010, .
  • [42] Mircea M, Stefan SA. Theoretical study of the microphysical parameterization of the scavenging coefficient as a function of precipitation type and rate. Atmos Environ. 1998;32:2931-2938.[Crossref]
  • [43] Kłos A, Rajfur M, Wacławek M, Wacławek W. Impact of roadway particulate matter on deposition of pollutants in the vicinity of main roads. Environ Protect Eng. 2009;3:77-84.
  • [44] Olszowski T, Tomaszewska B, Góralna-Włodarczyk K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ. 2012;50:139-147. DOI: 10.1016/j.atmosenv.2011.12.049.[Crossref][WoS]
  • [45] Nicholson KW, Branson JR, Giess P. Field measurements of the below cloud scavenging of particulate material. Atmos Environ. 1991;25A:771-777.[Crossref]
  • [46] Guilford JP. Psychometric Methods. New York: McGraw-Hill; 1954.
  • [47] González CM, Aristizábal BH. Acid rain and particulate matter dynamics in a mid-sized Andean city: The effect of rain intensity on ion scavenging. Atmos Environ. 2012;60:164-171. DOI: 10.1016/j.atmosenv.2012.05.054.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.