Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Methane decomposition over Fe supported
catalysts for hydrogen and nano carbon yield

Content

Title variants

Languages of publication

EN

Abstracts

EN
Production of hydrogen, being an environmentally
friendly energy source, has gained a lot of attention in the
recent years. In this article, iron-based catalysts, with
different active metal loadings, supported over magnesia
and titania are investigated for hydrogen production via
catalytic decomposition of methane. The catalytic activity
and stability results revealed that magnesia supported
catalysts performed better than titania supported
catalysts. Hydrogen reduction temperature of 500°C was
obtained suitable for catalyst activation. For magnesia
supported catalysts, only higher loadings i.e., 30% and
40% Fe-Mg catalysts showed reasonable activity, while all
titania supported catalysts presented less activity as well
as deactivation. Among all the catalysts, 30% Fe/MgO
catalyst displayed better activity. The formation of carbon
nanofibers was evidenced from morphological analysis.
FESEM and TEM images showed the generation of nonuniform
carbon nanofibers with broader diameter. The
catalysts were characterized using different techniques
such as BET, H2-TPR, O2-TPO, XRD, TGA, FESEM and TEM.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

received
18 - 10 - 2015
online
31 - 12 - 2015
accepted
9 - 11 - 2015

Contributors

  • Chemical
    Engineering Department, College of Engineering, King Saud
    University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Chemical
    Engineering Department, College of Engineering, King Saud
    University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Chemical
    Engineering Department, College of Engineering, King Saud
    University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Chemical
    Engineering Department, College of Engineering, King Saud
    University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Chemical
    Engineering Department, College of Engineering, King Saud
    University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • King Abdulaziz City for Science and Technology
    (KACST)
  • Chemical
    Engineering Department, College of Engineering, King Saud
    University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia

References

  • [1] Khaodee W., Wongsakulphasatch S., Kiatkittipong W., ArpornwichanopA., Laosiripojana N Assabumrungrat S., Selection ofappropriate primary fuel for hydrogen production for differentfuel cell types: Comparison between decomposition and steamreforming, Int. J. Hydrogen Energy, 2011, 36, 7696-7706.
  • [2] Acar C., Dincer I., Comparative assessment of hydrogenproduction methods from renewable and non-renewablesources, Int. J. Hydrogen Energy, 2014, 39, 1-12.
  • [3] Al-Hassani A.A., Abbas H.F., Daud W.M.A.W., Production ofCOx-free hydrogen by the thermal decomposition of methaneover activated carbon: Catalyst deactivation, Int. J. HydrogenEnergy, 2014, 39, 14783-14791.
  • [4] Wang H.Z., Leung D.Y.C., Leung M.K.H., Ni M., A review onhydrogen production using aluminum and aluminum alloys,Renew. Sust. Energy Rev.,2009, 13, 845-853.[Crossref]
  • [5] Fakeeha A.H., Naeem M.A., Khan W.U., Abasaeed A.E.,Al-Fatesh A.S.A., Reforming of Methane by CO2 over BimetallicNi-Mn/γ-Al2O3 Catalyst, Chin. J. Chem. Phys., 2014, 27,214-220.
  • [6] Manfro R.L. Ribeiro N.F.P. Souza M.M.V.M., Production ofhydrogen from steam reforming of glycerol using nickelcatalysts supported on Al2O3, CeO2 and ZrO2, Catal. Sust.Energy, 2013, 1, 60-70.
  • [7] Blom P.W.E., Basson G.W., Non-catalytic plasma-arc reformingof natural gas with carbon dioxide as the oxidizing agent forthe production of synthesis gas or hydrogen, Int. J. HydrogenEnergy, 2013, 38, 5671-5683.
  • [8] Venugopal A., Kumar S.N., Ashok J., Prasad D.H., Kumari V.D.,Prasad K.B.S., Subrahmanyam M., Hydrogen productionby catalytic decomposition of methane over Ni/SiO2, Int. J.Hydrogen Energy, 2007, 32, 1782-1788.
  • [9] Pinilla J.L., Utrilla R., Lázaro M.J., Moliner R., Suelves I., GarcíaA.B., Ni- and Fe-based catalysts for hydrogen and carbonnanofilament production by catalytic decomposition ofmethane in a rotary bed reactor, Fuel Process. Technol., 2011,92, 1480-1488.[WoS]
  • [10] Baker R.T.K. Waite R.J., Formation of carbonaceous depositsfrom the platinum-iron catalyzed decomposition of acetylene,Journal of Catalysis, 1975, 37, 101-105.[Crossref]
  • [11] Baker R.T.K, Catalytic growth of carbon filaments, Carbon,1989, 27, 315-323.[Crossref]
  • [12] Krishnankutty N., Park C., Rodriguez N.M., Baker R.T.K., Theeffect of copper on the structural characteristics of carbonfilaments produced from iron catalyzed decomposition ofethylene, Catalysis Today, 1997, 37, 295-307.[Crossref]
  • [13] Zhang C., Li a J., Shi C., Liu E., Du X., Feng W., Zhao N., Theefficient synthesis of carbon nano-onions using chemical vapordeposition on an unsupported Ni–Fe alloy catalyst, Carbon2011, 49, 1151–1158.[WoS]
  • [14] Rodriguez N.M., Kim M.S., Fortin F., Mochida I., Baker R.T.K.,Carbon deposition on iron nickel alloy particles. Appl Catal A:Gen 1997, 148, 265-282.
  • [15] Shen Y., Lua A.C., Synthesis of Ni and Ni–Cu supported oncarbon nanotubes for hydrogen and carbon production bycatalytic decomposition of methane, Appl. Catal. B: Environ.,2015, 164, 61-69.
  • [16] Awadallah A.E., Mostafa M.S., Aboul-Enein A.A., Hanafi S.A.,Hydrogen production via methane decomposition over Al2O3–TiO2 binary oxides supported Ni catalysts: Effect of Ti contenton the catalytic efficiency, Fuel, 2014, 129, 68-77.[WoS]
  • [17] Chai S.P., Zein S.H.S., Mohamed A.R., COx-free hydrogen andcarbon nanofibers produced from direct decomposition ofmethane on nickel-based catalysts, J. Nat. Gas Chem., 2006,15, 253-258.[Crossref]
  • [18] Awadallah A.E., Aboul-Enein A.A., Aboul-Gheit A.K., Effect ofprogressive Co loading on commercial Co–Mo/Al2O3 catalystfor natural gas decomposition to COx-free hydrogen productionand carbon nanotubes, Energy Convers. Manage., 2014, 77,143-151.[WoS]
  • [19] Abanades A., Rubbia C. Salmieri, D., Technological challengesfor industrial development of hydrogen production based onmethane cracking, Energy, 2012, 46, 359-363.
  • [20] Li Y., Li D., Wang G., Methane decomposition to COx-freehydrogen and nano-carbon material on group 8–10 base metalcatalysts: A review, Catal. Today, 2011, 162, 1-48.
  • [21] Abbas H.F., Daud W.M.A.W., Hydrogen production by methanedecomposition: A review, Int. J. Hydrogen Energy, 2010, 35,1160-1190.
  • [22] Tapia-Parada K., Valverde-Aguilar G., Mantilla A., ValenzuelaM.A., Hernández E., Synthesis and characterization of Ni/Ce–SiO2 and Co/Ce–TiO2 catalysts for methane decomposition,Fuel, 2013, 110, 70-75.[Crossref]
  • [23] Ermakova M.A., Ermakov D.Y., Chuvilin A.L., Kuvshinov G.G.,Decomposition of Methane over Iron Catalysts at the Rangeof Moderate Temperatures: The Influence of Structure of theCatalytic Systems and the Reaction Conditions on the Yield ofCarbon and Morphology of Carbon Filaments. J. Catal., 2001,201, 183-197.
  • [24] Pudukudy M., Yaakob Z., Methane decomposition over Ni,Co and Fe based monometallic catalysts supported on sol gelderived SiO2 microflakes, Chem. Eng. J., 2015, 262, 1009-1021.[WoS]
  • [25] Cunha A.F., Orfao J.J.M., Figueiredo J.L., Catalyticdecomposition of methane on Raney-type catalysts, Appl.Catal. A: Gen., 2008, 348, 103-112.
  • [26] Cunha A.F., Orfao J.J.M., Figueiredo J.L., Methanedecomposition on Fe–Cu Raney-type catalysts, Fuel Process.Technol., 2009, 90, 1234-1240.[WoS]
  • [27] Naresh S., Devadas P., Gerald P.H., Hydrogen Production byCatalytic Decomposition of Methane, Energy Fuel., 2001, 15,1528-1534.[Crossref]
  • [28] Naresh S., Pattanaik S., Huggins F.E., Panjala D., HuffmanG.P., XAFS and Mössbauer spectroscopy characterization ofsupported binary catalysts for nonoxidative dehydrogenationof methane, Fuel Process. Technol., 2003, 83, 163-173.
  • [29] Saraswat S.K., Pant K.K., Synthesis of carbon nanotubes bythermo catalytic decomposition of methane over Cu and Znpromoted Ni/MCM-22 catalyst, J. Environ. Chem. Eng., 2013, 1,746-754.
  • [30] Tang L., Yamaguchi D., Burke N., Trimm D., Chiang K., Methanedecomposition over ceria modified iron catalysts, Catal.Commun., 2010, 11, 1215-1219.[Crossref]
  • [31] Ibrahim A.A, Fakeeha A.H., Al-FateshA.S., Abasaeed A.E.,Wasim U. Khan W.U., Methane decomposition over iron catalystfor hydrogen production, Int. J. Hydrogen Energy,2015, 40,7593-7600.
  • [32] Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., UshankovV.A., Chuvilin A.L., Pavlyukhin Y.T.,Promoted iron Catalystof Low-Temperature Methane Decomposition,Chemistry forSustainable Development, 2003,11, 239-247.
  • [33] Zhang X., Hydrothermal synthesis and catalytic performanceof high-surface-area mesoporous nanocrystallite MgAl2O4 ascatalyst support, Mater. Chem. Phys., 2009, 16, 415-420.[Crossref]
  • [34] Taghavimoghaddam J., Knowles G.P., Chaffee A.L., Impact ofpreparation methods on SBA-15 supported low cobalt-contentcomposites: structure and catalytic activity, J. Mol. Catal. A:Chem., 2013; 377, 115-122.[WoS]
  • [35] Saraswat S.K., Pant K.K., Synthesis of hydrogen and carbonnanotubes over copper promoted Ni/SiO2 catalyst by thermocatalyticdecomposition of methane, J. Nat. Gas Sci. Eng., 2013,13, 52-59.[WoS]
  • [36] Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W.Maniukiewicz W., Reduction behavior of iron oxides inhydrogen and carbon monoxide atmospheres, Appl. Catal. A:Gen., 2007, 326, 17-27.[WoS]
  • [37] Liu F., Asakura K., He H., Liu Y., Shan W., Shi X., Zhang C.,Influence of calcination temperature on iron titanate catalystfor the selective catalytic reduction of NOx with NH3, Catal.Today, 2011, 164, 520-527.
  • [38] Tan S. Wang, B., Active Sites for Adsorption and Reaction ofMolecules on Rutile TiO2(110) and Anatase TiO2(001) Surfaces,Chin. J. Chem. Phys., 2015, 28, 383-395.
  • [39] Wang W., Wang H., Yang Y. Jiang S., Ni–SiO2 and Ni–Fe–SiO2catalysts for methane decomposition to prepare hydrogen andcarbon filaments, International Journal of Hydrogen Energy,2012 37, 9058-9066.
  • [40] Reshetenko T.V. Avdeeva L.B Ushakov V.A Moroz E.M. ShmakovA.N. Kriventsov V.V. Kochubey D.I. Pavlyukhin Yu.T. ChuvilinA.L. Ismagilov Z.R.,Coprecipitated iron-containing catalysts(Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decompositionat moderate temperatures: Part II. Evolution of the catalysts inreaction, Applied Catalysis A: General, 2004, 270, 87-99.
  • [41] Avdeeva L.B. Reshetenko T.V. Ismagilov Z.R. LikholobovV.A. Iron-containing catalysts of methane decomposition:accumulation of filamentous, carbon, Appl. Catal. A: Gen.,2002, 228, 53-63.
  • [42] Choudhary T.V., Aksoylu E., Goodman D.W., Nonoxidativeactivation of methane, Catal. Rev. Sci. Eng., 2003, 45, 151-203.
  • [43] Lamouroux E., Serp P., Kalck P., Catalytic routes towardssingle wall carbon nanotubes, Catal. Rev. Sci. Eng., 2007, 49,341-405.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_cse-2015-0005
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.